Skip to main content
Log in

Interaction of Anisotropic Ellipsoidal Inclusions in an Isotropic Medium under Mechanical Loads and Uniform Heating

  • Published:
International Applied Mechanics Aims and scope

Abstract

Eshelby's equivalent-inclusion method is extended to a finite number of arbitrarily oriented anisotropic ellipsoidal inclusions in an elastic isotropic matrix under polynomial mechanical loading and heating. The interaction of two identical and two different triaxial ellipsoidal inclusions in an elastic medium is studied as numerical examples. In special cases, the results are compared with those obtained by other authors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. S. Kirilyuk, “On the structure of stresses inside an ellipsoidal heterogeneity for thermoelastic problems', ” Vych. Prikl. Mat., Issue 71, 70–76 (1990).

    Google Scholar 

  2. V. S. Kirilyuk, “On the thermostressed state of an ellipsoidal heterogeneity (inclusion) under polynomial mechanical and thermal external fields', ” Teor. Prikl. Mekh., 30, 67–76 (1999).

    Google Scholar 

  3. V. I. Kushch, “Summation theorems for partial vector solutions of the Lamé equation in a spheroidal basis', ” Prikl. Mekh., 31, No. 2, 86–92 (1995).

    Google Scholar 

  4. V. I. Kushch, The Stress State and Macroscopic Properties of Partially Homogeneous Bodies with Spheroidal Interfaces [in Ukrainian], Doctoral Thesis, Kiev (1998).

  5. H. Neuber, Kerbspannungslehre (Theory of Notch Stress Concentration), Springer Verlag, Berlin—Heidelberg—New York—Tokyo (1985).

    Google Scholar 

  6. A. G. Nikolaev, “Formulas for reexpansion of vector solutions of the Lamé equation in spherical and spheroidal coordinate systems', ” Mat. Metod. Analiza Dinam. Sistem, 8, 100–104 (1984).

    Google Scholar 

  7. A. G. Nikolaev and V. S. Protsenko, “The first and second axisymmetric problems of elastic theory for doubly connected domains bounded by a sphere and a spheroid', ” Prikl. Mat. Mekh., 24, No. 1, 65–74 (1990).

    Google Scholar 

  8. V. S. Panasyuk, M. M. Stadnik, and V. P. Silovanyuk, Stress Concentration in Three-Dimensional Bodies with Thin Inclusions [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  9. Yu. N. Podil'chuk, Three-Dimensional Problems of Elastic Theory [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  10. Yu. N. Podil'chuk and V. S. Kirilyuk, “Shear stress distribution in a circular cylinder with an elastic ellipsoidal inclusion', ” Prikl. Mekh., 22, No. 11, 36–40 (1986).

    Google Scholar 

  11. V. S. Protsenko and A. G. Nikolaev, “Solutions of spatial elastic problems using reexpansion formulas', ” Prikl. Mekh., 22, No. 7, 83–89 (1986).

    Google Scholar 

  12. A. F. Ulitko, The Method of Vector Eigenfunctions in Spatial Elastic Problems [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  13. H. S. Chen and A. Acrivos, “The solution of the equations of linear elasticity for an infinite region containing two spherical inclusions', ” Int. J. Solid Struct., 14, 349–364 (1978).

    Google Scholar 

  14. R. H. Edwards, “Stress concentration around spheroidal inclusions and cavities', ” J. Appl. Mech., 18, No. 1, 65–73 (1951).

    Google Scholar 

  15. J. D. Eshelby, “The determination of the field of an ellipsoidal inclusion and related problems', ” Proc. Roy. Soc., A 241, 376–396 (1957).

    Google Scholar 

  16. V. S. Kirilyuk, “On a full-strength juncture between an isotropic matrix and an orthotropic inclusion under a triaxial load', ” Int. Appl. Mech., 36, No. 1, 82–89 (2000).

    Google Scholar 

  17. V. I. Kushch, “Elastic equilibrium of a medium containing a finite number of aligned spheroidal inclusions', ” Int. J. Solid Struct., 33, 1175–1189 (1996).

    Google Scholar 

  18. V. I. Kushch, “Elastic equilibrium of a medium containing a finite number of arbitrarily oriented spheroidal inclusions', ” Int. J. Solid Struct., 35, No. 12, 1187–1198 (1998).

    Google Scholar 

  19. Z. A. Moskovidis and T. Mura, “Two ellipsoidal inhomogeneities by the equivalent inclusion method', ” J. Appl. Mech., 42, 847–852 (1975).

    Google Scholar 

  20. T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, The Hague, Netherlands (1982).

    Google Scholar 

  21. Yu. N. Podil'chuk and I. V. Lebedeva, “Equilibrium of piezoceramic cylinder with spheroidal cavity', ” Int. Appl. Mech., 35, No. 5, 477–487 (1999).

    Google Scholar 

  22. M. A. Sadowsky and E. Strenberg, “Stress concentration around a triaxial ellipsoidal', ” J. Appl. Mech., 16, No. 2, 149–157 (1949).

    Google Scholar 

  23. J. F. Shelley and Y. Y. Yu, “The effect of two rigid spherical inclusions on the stresses in an infinite elastic solid', ” J. Appl. Mech., 33, 993–998 (1966).

    Google Scholar 

  24. E. Strenberg and M. A. Sadowsky, “On the axisymmetric problem of the theory of elasticity for an infinite region containing two spherical cavities', ” J. Appl. Mech., 19, 19–27 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirilyuk, V.S. Interaction of Anisotropic Ellipsoidal Inclusions in an Isotropic Medium under Mechanical Loads and Uniform Heating. International Applied Mechanics 37, 1180–1188 (2001). https://doi.org/10.1023/A:1013286400042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013286400042

Keywords

Navigation