Skip to main content
Log in

Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Zn, K, and Cu effects on the structure and surface area and on the reduction, carburization, and catalytic behavior of Fe–Zn and Fe oxides used as precursors to Fischer–Tropsch synthesis (FTS) catalysts, were examined using X-ray diffraction, kinetic studies of their reactions with H2 or CO, and FTS reaction rate measurements. Fe2O3 precursors initially reduce to Fe3O4 and then to metallic Fe (in H2) or to a mixture of Fe2.5C and Fe3C (in CO). Zn, present as ZnFe2O4, increases the surface area of precipitated oxide precursors by inhibiting sintering during thermal treatment and during activation in H2/CO reactant mixtures, leading to higher FTS rates than on ZnO-free precursors. ZnFe2O4 species do not reduce to active FTS structures, but lead instead to the loss of active components; as a result, maximum FTS rates are achieved at intermediate Zn/Fe atomic ratios. Cu increases the rate of Fe2O3 reduction to Fe3O4 by providing H2 dissociation sites. Potassium increases CO activation rates and increases the rate of carburization of Fe3O4. In this manner, Cu and K promote the nucleation of oxygen-deficient FeO x species involved as intermediate inorganic structures in reduction and carburization of Fe2O3 and decrease the ultimate size of the Fe oxide and carbide structures formed during activation in synthesis gas. As a result, Cu and K increase FTS rates on catalysts formed from Fe–Zn oxide precursors. Cu increases CH4 and the paraffin content in FTS products, but the additional presence of K inhibits these effects. Potassium titrates residual acid and hydrogenation sites and increases the olefin content and molecular weight of FTS products. K increases the rate of secondary water–gas shift reactions, while Cu increases the relative rate of oxygen removal as CO2 instead of water after CO is dissociated in FTS elementary steps. Through these two different mechanisms, K and Cu both increase CO2 selectivities during FTS reactions on catalysts based on Fe–Zn oxide precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Fischer and H. Tropsch, Brennstoff-Chem. 7 (1926) 97.

    Google Scholar 

  2. R.B. Anderson, in: Catalysis, Vol. 4, ed. P.H. Emmett (Van Nostrand-Reinhold, New York, 1956) p. 29.

    Google Scholar 

  3. H.H. Storch, N. Golumbic and R.B. Anderson, The Fischer-Tropsch and Related Syntheses (Wiley, New York, 1951)

    Google Scholar 

  4. R.B. Anderson, The Fischer-Tropsch Synthesis (Wiley, New York, 1984).

    Google Scholar 

  5. M.E. Dry, The Fischer-Tropsch Synthesis, Catal. Sci. Technol., Vol. 1, eds. J.R. Anderson and M. Boudart (Springer, New York, 1981) p. 160.

    Google Scholar 

  6. H. Kolbel and M. Ralek, Catal. Rev. Sci. Eng. 21 (1980) 225.

    Google Scholar 

  7. J.W. Niemantsverdriet and A.M. van der Kraan, J. Catal. 72 (1981) 385.

    Google Scholar 

  8. J.A. Amelse, J.B. Butt and L.J. Schwartz, J. Phys. Chem. 82 (1978) 558.

    Google Scholar 

  9. G.B. Raupp and W.N. Delgass, J. Catal. 58 (1979) 348.

    Google Scholar 

  10. R. Dictor and A.T. Bell, J. Catal. 97 (1986) 121.

    Google Scholar 

  11. J.P. Reymond, P. Meriaudeau and S.J. Teichner, J. Catal. 75 (1982) 39.

    Google Scholar 

  12. S. Kuivila, P.C. Stair and J.B. Butt, J. Catal. 118 (1989) 299.

    Google Scholar 

  13. S. Huang, L. Xu and B.H. Davis, Fuel Sci. Techol. Int. 11 (1993) 639.

    Google Scholar 

  14. E. Iglesia, S.C. Reyes, R.J. Madon and S.L. Soled, Adv. Catal. 39 (1993) 221.

    Google Scholar 

  15. S. Soled, E. Iglesia, S. Miseo, B.A. DeRites and R.A. Fiato, Topics Catal. 2 (1995) 193.

    Google Scholar 

  16. S. Soled, E. Iglesia and R.A. Fiato, Catal. Lett. 7 (1990) 271.

    Google Scholar 

  17. A.P. Raje, R.J. O'Brien and B.H. Davis, J. Catal. 180 (1998) 36.

    Google Scholar 

  18. S. Li, S. Krishnamoorthy, A. Li, G.D. Meitzner and E. Iglesia, J. Catal., submitted.

  19. R.J. O'Brien, L. Xu, R.L. Spicer, S. Bao, D.R. Milburn and B.H. Davis, Catal. Today 36 (1997) 325.

    Google Scholar 

  20. S. Li, G.D. Meitzner and E. Iglesia, J. Phys. Chem. B, in press.

  21. S. Li, G.D. Meitzner and E. Iglesia, J. Phys. Chem. B, submitted.

  22. D.R. Lide and H.P.R. Frederikse, eds.; Handbook of Chemistry and Physics, 75th Ed. (The Chemical Rubber Company Press, Boca Raton, 1994).

    Google Scholar 

  23. S. Li, G.D. Meitzner and E. Iglesia, unpublished results.

  24. M.J. Tiernan, P.A. Barnes and G.M.B. Parkes, J. Phys. Chem. B 105 (2001) 220.

    Google Scholar 

  25. H.H. Kung, Transitional Metal Oxides, Stud. Surf. Sci. Catal. 49 (1989).

  26. G.A. Somorjai, Catal. Rev. Sci. Eng. 23 (1981) 189.

    Google Scholar 

  27. R. Habermehl and K. Atwood, Am. Chem. Soc. Div. Fuel. Chem. Prepr. 8 (1964) 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Li, A., Krishnamoorthy, S. et al. Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts. Catalysis Letters 77, 197–205 (2001). https://doi.org/10.1023/A:1013284217689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013284217689

Navigation