Skip to main content
Log in

Some Results of Developing Classical and Modern Theories of Stability of Motion

  • Published:
International Applied Mechanics Aims and scope

Abstract

The paper presents some results obtained at the Department of Stability of Processes of the Institute of Mechanics of the NASU in the following areas: the nonclassical theories of stability of motion, the method of integral inequalities, the comparison method, stability of large-scale systems, stability analysis of motions in nonlinear mechanics, matrix-valued Lyapunov functions and their application, and qualitative analysis of population evolution. The characteristic features of the development of stability theories at the end of the 20th century are discussed in the final section

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Z. Abdullin, L. Yu. Anapol'skii et al., The Method of Vector Lyapunov Functions in the Theory of Stability [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. R. K. Azimov, Stability Analysis of Stochastic Systems based on Lyapunov Matrix Functions [in Russian], PhD Thesis, Inst. Mekh. AN Ukrainy, Kiev (1993).

    Google Scholar 

  3. K. A. Begmuratov, Hierarchical Matrix Lyapunov Functions and Their Application to Stability Problems for Dynamic Systems [in Russian], PhD Thesis, Inst. Mekh. AN Ukrainy, Kiev (1993).

    Google Scholar 

  4. R. Bellamn, Stability Theory of Differential Equations, McGraw-Hill, New York (1953).

    Google Scholar 

  5. B. Van der Pol, “The nonlinear theory of electric oscillations', ” Proc. Inst. Radio Eng., 22, 1051 (1934).

    Google Scholar 

  6. V. M. Volosov and B. I. Morgunov, The Averaging Method in the Theory of Nonlinear Vibrating Systems [in Russian], Izd. Moskovskogo Univ., Moscow (1971).

    Google Scholar 

  7. V. V. Vujicic and A. A. Martynyuk, Some Problems of the Mechanics of Nonautonomous Systems [in Russian], Matem. Inst. SANU, Belgrade (1991).

    Google Scholar 

  8. E. A. Grebenikov and Yu. A. Ryabov, New Qualitative Methods in Heavenly Mechanics [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  9. C. Corduneanu, “Application of differential inequalities in the theory of stability', ” Anal. Stiint. “Al. I. Cuza”din IASI, Ser. I, 6, No. 1, 47–58 (1960).

    Google Scholar 

  10. K. A. Karacharov and A. G. Pilyutik, Introduction to the Technical Theory of Stability of Motion [in Russian], GIFML, Moscow (1962).

    Google Scholar 

  11. Yu. M. Krapivnyi, Techniques for Constructing Lyapunov Matrix Functions and Estimating the Domain of Asymptotic Stability of Large-Scale Systems [in Russian], PhD Thesis, Inst. Mekh. AN USSR, Kiev (1988).

    Google Scholar 

  12. N. N. Krasovskii, Some Problems of the Theory of Stability of Motion [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

  13. N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics [in Russian], Izd. AN USSR, Kiev (1937).

    Google Scholar 

  14. V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability of Motion: Comparison Method [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  15. A. M. Lyapunov, The General Problem on Stability of Motion [in Russian], Izd. AN SSSR, Moscow (1956).

    Google Scholar 

  16. A. A. Martynyuk, Technical Stability in Dynamics [in Russian], Tekhnika, Kiev (1973).

    Google Scholar 

  17. A. A. Martynyuk, Stability of Motion of Complex Systems [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  18. A. A. Martynyuk, Practical Stability of Motion [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  19. A. A. Martynyuk and R. Gutowski, Integral Inequalities and Stability of Motion [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  20. A. A. Martynyuk, J. Kato, and A. A. Shestakov, Stability of Motion: the Method of Limit Equations [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  21. A. A. Martynyuk, V. Lakshmikantham, and S. Leela, Stability of Motion: the Method of Integral Inequalities [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  22. A. A. Martynyuk, L. G. Lobas, and N. V. Nikitina, Dynamics and Stability of Motion of Wheeled Transport Vehicles [in Russian], Tekhnika, Kiev (1981).

    Google Scholar 

  23. A. A. Martynyuk and N. V. Nikitina, “Periodic motions in multidimensional systems', ” Prikl. Mekh., 32, No. 2, 71–77 (1996).

    Google Scholar 

  24. A. A. Martynyuk and N. V. Nikitina, “The theory of motion of a double mathematical pendulum', ” Prikl. Mekh., 36, No. 9, 1252–1258 (2000).

    Google Scholar 

  25. A. A. Martynyuk and A. N. Chernienko, “Stability of motion in two measures', ” Dokl. NAN Ukrainy, No. 2, 44–48 (1998).

  26. Yu. A. Martynyuk-Chernienko, “Uniform asymptotic stability of the solutions of an inexact system with respect to an invariant set', ” Dokl. RAN, 364, No. 2, 163–166 (1999).

    Google Scholar 

  27. V. M. Matrosov, “The theory of stability of motion revisited', ” Prikl. Mat. Mekh., 26, No. 5, 992–1002 (1962).

    Google Scholar 

  28. V. G. Miladzhanov, Application of Lyapunov Matrix Functions to the Stability Analysis of Systems with Fast and Slow Motions [in Russian], PhD Thesis, Inst. Mekh. AN USSR, Kiev (1988).

    Google Scholar 

  29. Yu. A. Mitropol'skii, The Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  30. N. D. Moiseev, “On some methods of the theory of technical stability', ” Tr. VVIA im. N. E. Zhukovskogo, Issue 135, 72–81 (1945).

    Google Scholar 

  31. A. S. Oziraner, “On stability of motion in linear approximation', ” Prikl. Mat. Mekh., 413–421 (1977).

  32. A. Poincaré, On Curves Determined by Differential Equations [Russian translation], Gostekhizdat, Moscow (1947).

    Google Scholar 

  33. M. Roseau, Vibrations Non Linéaires et Théorie de la Stabilité, Springer-Verlag, Berlin (1966).

    Google Scholar 

  34. V. M. Starzhinskii, Applied Methods of Nonlinear Vibrations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  35. A. N. Filatov, The Averaging Method in Differential and Integro-Differential Equations [in Russian], FAN, Tashkent (1971).

    Google Scholar 

  36. P. F. Fil'chakov, Numerical and Graphic Methods of Applied Mathematics [in Russian], Naukova Dumka, Kiev (1970).

    Google Scholar 

  37. S. A. Chaplygin, “A new method of approximate integration of differential equations', ” in: Selected Works on Mechanics and Mathematics [in Russian], GITTL, Moscow (1954), pp. 490–583.

    Google Scholar 

  38. N. G. Chetaev, “On one Poincaré's idea', ” Sb. Nauchn. Trudov Kazanskogo Aviats. Univ., No. 2, 18–20 (1934), No. 3, 3—18 (1935), No. 10, 3—4 (1940). 1155

  39. N. G. Chetaev, “A note on estimates of approximate integrations', ” Prikl. Mat. Mekh., 21, Issue 37, 419–421 (1957).

    Google Scholar 

  40. V. V. Shegai, Application of the Lyapunov Matrix Function in the Theory of Stability of Motion [in Russian], PhD Thesis, Inst. Mekh. AN USSR, Kiev (1986).

    Google Scholar 

  41. F. N. Albrecht, H. Gatzke, and N. Wax, “Stable limit cycles in prey—predator populations', ” Science, 182, 1073–1074 (1974).

    Google Scholar 

  42. Z. Artstein, “Limiting equations and stability of nonautonomous ordinary differential equations', ” in: J. P. La-Salle (ed.), The Stability of Dynamical Systems, SIAM, Philadelphia (1976).

    Google Scholar 

  43. E. A. Barbashin, Introduction to the Theory of Stability [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  44. M. V. Bebutov, “Dynamical systems in the space of continuous functions', ” Dokl. AN SSSR, 27, 904–906 (1940).

    Google Scholar 

  45. R. Bellman, “Vector Lyapunov functions', ” SIAM J. Contr., Ser. A, No. 1, 32–34 (1962).

  46. I. A. Bihari, “A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations', ” Acta Math. Anal. Appl., No. 33, 77–81 (1977).

  47. W. Bogusz, Statecznosc Techniczna, PWN, Warsaw (1972).

    Google Scholar 

  48. P. Borne, J. P. Richard, and N. E. Radhy, “Stability, stabilization, regulation using vector norms', ” in: A. Fossard and D. Normand-Cyrot (eds.), Nonlinear Systems. Stability and Stabilization, Vol. 2, Chapman and Hall, London, (1996), pp. 45–90.

    Google Scholar 

  49. M. Z. Djordjevic, “Zur stabilitat nichtlinearer gekoppelter Systeme mit der Matrix-Ljapunov-Methode', ” Diss. ETH, No. 7690, Zurich (1984).

  50. S. S. Dragomir, “The Gronwall type lemmas and applications', ” Monografii Matematice, Universitatii din Timisoara, No. 29 (1987).

  51. L. Euler, Methodus Inveniendi Lineas Curves Maximi Minime Propletate Gaudentes (Appendix, De Curvis Elasticis) Maraim Michaelem Bousquet, Lansanne—Geneva (1744).

    Google Scholar 

  52. H. I. Freedman, Deterministic Mathematical Models in Population Ecology, HIFR Consulting Ltd., Edmonton (1987).

    Google Scholar 

  53. H. I. Freedman and A. A. Martynyuk, “Stability analysis with respect to two measures for population growth models of Kolmogorov type', ” Nonlin. Anal., No. 25, 1221–1230 (1995).

  54. H. I. Freedman and A. A. Martynyuk, “Boundedness criteria for solutions of perturbed Kolmogorov population models', ” Canadian Appl. Math. Quarterly, 3, 207–217 (1995).

    Google Scholar 

  55. Lj. T. Grujic, A. A. Martynyuk, and M. Ribbens-Pavella, Large-Scale Systems Stability under Structural and Singular Perturbations, Springer-Verlag, Berlin (1987).

    Google Scholar 

  56. E. Kamke, “Zur Theorie der Systeme gevonlicher Differentialgleichungen', ” Acta Matem., No. 58, 57–85 (1932).

  57. J. Kato, A. A. Martynyuk, and A. A. Shestakov, Stability of Motion of Nonautonomous Systems (Method of Limiting Equations), Gordon and Breach Science Publishers, Singapore (1996).

    Google Scholar 

  58. J. L. Lagrange, Mechanique Analytique, Courcier, Paris (1788).

    Google Scholar 

  59. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1, Acad. Press, New York (1969).

    Google Scholar 

  60. V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, New York (1989).

    Google Scholar 

  61. V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical Stability of Nonlinear Systems, World Scientific, Singapore (1990).

    Google Scholar 

  62. A. A. Martynyuk, Stability Analysis: Nonlinear Mechanics Equations, Gordon and Breach Science Publishers, Singapore (1995).

    Google Scholar 

  63. A. A. Martynyuk, Stability by Liapunov's Matrix Functions Method with Applications, Marcel Dekker, Inc., New York (1998).

    Google Scholar 

  64. A. A. Martynyuk, “Qualitative analysis with respect to two measures for population growth models of Kolmogorov type', ” in: G. Leitmann, F. E. Udwadia, and A. V. Kryazhimskii, (eds.), Dynamics and Control, Vol. 9, Gordon and Breach Science Publishers, Singapore (1999), pp. 109–117.

    Google Scholar 

  65. A. A. Martynyuk, “Stability analysis of discrete systems', ” Int. Appl. Mech., 36, No.7, 835–865 (2000).

    Google Scholar 

  66. A. A. Martynyuk and Sun Chen Qi, Practical Stability Theory with Applications [in Chinese], Harbin Institute of Technology, Harbin (1999).

    Google Scholar 

  67. R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton (1973).

    Google Scholar 

  68. G. I. Mel'nikov, “Nonlinear stability of motion of a ship on course', ” Vestn. Leningr. Univ., 13, No. 13, 90–98 (1962).

    Google Scholar 

  69. A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, Acad. Press, New York (1977).

    Google Scholar 

  70. B. G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, San Diego (1998).

    Google Scholar 

  71. Peng Xiaolin, “A generalized Lyapunov matrix-function and its applications', ” Pure Appl. Math., 7, No. 1, 119–122 (1991).

    Google Scholar 

  72. A. Poincaré, “Sur les courbes definies par une equation differentielle', ” J. de Mathem., Series 3, No. 7, 375–422 (1881), No. 8, 251—296 (1882).

    Google Scholar 

  73. G. R. Sell, “Nonautonomous differential equations and topological dynamics I. The basic theory', ” Trans. Amer. Math. Soc., 127, 241–262 (1967).

    Google Scholar 

  74. G. R. Sell, “Nonautonomous differential equations and topological dynamics II. Limiting equations', ” Trans. Amer. Math. Soc., 127, 263–283 (1967).

    Google Scholar 

  75. M. D. Shaw, Contribution to the Theory of Matrix Differential Equations, Ph. D. Dissertation, Florida Institute of Technology, Melbourne (1993).

    Google Scholar 

  76. D. D. Siljak, Large Scale Dynamical Systems, North-Holland, New York (1978).

    Google Scholar 

  77. J. M. Skowronski, Nonlinear Liapunov Dynamics, World Scientific, Singapore (1990).

    Google Scholar 

  78. J. W. Strutt and R. Baron, The Theory of Sound, Vols. 1, 2, Macmillan and Co, London (1926).

    Google Scholar 

  79. J. Szarski, Differential Inequalities, PWN, Warsaw (1967).

    Google Scholar 

  80. V. Volterra, Lecons sur la theorie mathematique de la lutte pour la vie, Gauthier-Villars, Paris (1927).

    Google Scholar 

  81. W. Walter, Differential and Integral Inequalities, Springer-Verlag, Berlin—New York (1970).

    Google Scholar 

  82. T. Wazewski, “Systemes des equations et des inequalites differentielles ordinaries aux deuxiemes members monotones et leur applications', ” Annal. Soc. Polon. Math., 23, 112–166 (1950).

    Google Scholar 

  83. V. L. Zubov, Mathematical Analysis of Automatic Control Systems [in Russian], Mashinostroenie, Leningrad (1979).

    Google Scholar 

  84. Yu. A. Martynyuk-Chernienko, “Application of the canonical Lyapunov function in the theory of stability of uncertain systems', ” Int. Appl. Mech., 36, No. 8, 1112–1116 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynyuk, A.A. Some Results of Developing Classical and Modern Theories of Stability of Motion. International Applied Mechanics 37, 1142–1157 (2001). https://doi.org/10.1023/A:1013278230993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013278230993

Keywords

Navigation