Skip to main content
Log in

Extractive scintillating resin for 99Tc quantification in aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method utilizing extractive scintillating resin for 99Tcmonitoring in aqueous solutions is presented. These extractive scintillatorscombine analyte selective uptake and scintillating properties to produce dualfunctionality analytical resins. These resins were produced by (1) co-locatedextraction chromatographic resin and plastic scintillating beads, (2) immobilizingfluors in macroporous polystyrene supports to which chains of monomethylatedpolyethylene glycol have been grafted and (3) co-immobilizing organic scintillatingfluors and a quaternary ammonium extractant (Aliquat-336) within macroporousacrylic and polystyrene supports. The first and third resins selectively extractpertechnetate ions from dilute acid whereas the second resin selectively extractspertechnetate ions from high ionic strength solutions. These resins were utilizedin ~0.20 ml pore volume columns while 99Tc was continually monitoredwith commercially available scintillation detection systems. Manual and automatedmicrofluidics were used to deliver sample and reagent solution for loadingand elution of the 99Tc. The detection efficiencies were determinedto be 45 and 70% for acrylic and polystyrene based resins, respectively, andindependent of extractant. Minimum detectable 99Tc concentrationusing the Aliquat-336/acrylic-based resin was 6.2 Bq . l –1 for a 50-mlsample and 30-minute count time. The new methodology was applied towards analysisof contaminated groundwater samples and nuclear waste simulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, S. L. Maxwell, M. R. Nelson, Anal. Chim. Acta, 310 (1995) 63.

    Google Scholar 

  2. R. D. Rogers, A. H. Bond, S. T. Griffin, E. P. Horwitz, Solv. Extr. Ion Exch., 14 (1996) 919.

    Google Scholar 

  3. J. W. Grate, O. B. Egorov, Anal. Chem., (December 1, 1998) 779A.

  4. S. H. Reboul, R. A. Fjeld, Radioact. Radiochem., 5 (1994) 42.

    Google Scholar 

  5. O. B. Egorov, J. W. Grate, J. Ruzicka, J. Radioanal. Nucl. Chem., 234 (1998) 231.

    Google Scholar 

  6. J. D. Ludwick, Health Phys., 6 (1961) 63.

    PubMed  Google Scholar 

  7. W. J. McDowell, B. L. McDowell, Liquid Scintillation Alpha Spectrometry, CRC Press, Boca Raton, 1994.

    Google Scholar 

  8. A. M. Heimbuch, H. Y. Gee, A. DeHaan, Jr., L. Leventhall, Radioisotope sample measurement techniques in medicine and biology, Proc. Intern. Atomic Energy Agency Symp., Vienna, May 24–28, 1965.

  9. M. Li, J. B. Schlenoff, Anal Chem., 66 (1994) 824.

    Google Scholar 

  10. O. B. Egorov, S. K. Fiskum, M. J. O'Hara, J. W. Grate, Anal. Chem., 71 (1999) 5420.

    Google Scholar 

  11. T. A. DeVol, J. E. Roane, J. M. Williamson, J. M. Duffey, J. T. Harvey, Radioact. Radiochem., 11 (2000) No. 1.

  12. T. A. DeVol, J. M. Duffey, A. Paulenova, J. Radioanal. Nucl. Chem., 249 (2001) No. 2.

  13. L. A. Currie, Anal Chem., 40 (1968) 586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grate, J. Extractive scintillating resin for 99Tc quantification in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry 249, 181–189 (2001). https://doi.org/10.1023/A:1013278023236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013278023236

Keywords

Navigation