Skip to main content
Log in

Physical Fundamentals of a Local Approach to Analysis of Brittle Fracture of Metals and Alloys

  • Published:
Materials Science Aims and scope

Abstract

We give a review of original investigations and the literature data on the local approach to the description of brittle (quasibrittle) fracture of metals with emphasis on the physical aspect of the problem. Two variants of the local approach are considered, namely: deterministic and probabilistic ones. We show that the local fracture stress σ F is not a constant but varies depending on the local plastic deformation and the degree of its inhomogeneity. We establish that a considerable excess of the local fracture stress over the brittle strength of a metal R MC under uniaxial tension is caused by a scale effect related to the localization of the induced fracture in an extremely small region. We consider a new variant of the local approach to brittle fracture without the Weibull distribution. In this case, the probability of fracture is found by computer simulation of the processes of formation of incipient cracks and loss of their stability. This approach enables us to separate the influence of the microstructure of a metal and its stress-strain state in the vicinity of a notch or a sharp crack on the local fracture stress. We established three main factors that control the regularities of micro- and macrofracture of a metal under conditions of stress concentration. These factors are the distribution of the lengths and orientations of incipient cracks and their density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Beremin, “A local criterion for cleavage fracture of a nuclear pressure vessel steel,” Met. Trans., 14A, 2277–2287 (1983).

    Google Scholar 

  2. C. S. Wiesner, The “Local Approach” to Cleavage Fracture – Concepts and Applications, Abington, Cambridge (1996).

    Google Scholar 

  3. M. Di. Fant, V. Le Cog, O. Cleizergues, et al., “Development of a simplified approach for using the local approach to fracture,” in: J. Phys. IV Coloq. C6, Suppl. to J. Phys. III 6 (1996), pp. 503512.

    Google Scholar 

  4. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, and D. I. Nikonenko, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of concentration of stresses. Part 3. Toughness of metals and alloys,” Probl. Prochn., No. 1, 72–92 (2000).

    Google Scholar 

  5. G. V. Uzhik, Cleavage Resistance and Strength of Metals [in Russian], Academy of Sciences of the USSR, Moscow (1950).

    Google Scholar 

  6. J. F. Knott, Fundamentals of Fracture Mechanics, London, Butterworths (1973).

  7. A. Ya. Krasovskii, Brittleness of Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  8. V. V. Panasyuk, “Deformation criteria in fracture mechanics,” Fiz.Khim. Mekh. Mater., 22, No. 1, 7–17 (1986).

    Google Scholar 

  9. K. S. Kühne and W. A. Dahl, “Einflub des spannugz ustandes und des Gefüges auf die spaltbrunchspannung von baustahlen,” Arch. Eisenhuttenwes, No. 11, 439–440 (1983).

    Google Scholar 

  10. S. A. Kotrechko, “Critical cleavage stress and ‘brittle’ strength of polycrystalline metals,” Metallofizika, 14, No. 5, 37 (1992).

    Google Scholar 

  11. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, and D. I. Nikonenko, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of concentration of stresses. Part 1. Experimental regularities,” Probl. Prochn., No. 4, 5–16 (1997).

    Google Scholar 

  12. S. A. Kotrechko, Y. Y. Meshkov, and G. S. Mettus, “Critical cleavage stress σF and the problem of ‘brittle’ strength of metals,” in: “Advances in Fracture Resistance in Materials,” Vol. 3 (Kiev, March 1993), Lviv (1995), pp. 23–31.

    Google Scholar 

  13. S. A. Kotrechko, Yu. Ya. Meshkov, and G. S. Mettus, “On the physical nature of strength of polycrystalline metals in the temperature range of the ductilebrittle transition,” Metallofiz. Noveish. Tekhnol., 16, No. 11, 31–34 (1994).

    Google Scholar 

  14. P. Yu. Volosevich, S. A. Kotrechko, Yu. Ya. Meshkov, and D. I. Musienko, “Influence of plastic deformation on the intragranular distribution of dislocations in a lowcarbon steel in the process of its fracture in the temperature interval of the ductilebrittle transition,” Metallofiz. Noveish. Tekhnol., 16, No. 11, 40–43 (1994).

    Google Scholar 

  15. K. Kühne, “Cleavage fracture along cleavage planes,” in: W. Dahl and W. Anton (editors), Werkstoffkunde Eisen und Stahl. Teil I: Grnundlagen der Festigkeit, der Zahingkeit und des Bruchs [Russian translation], Metallurgiya, Moscow (1986), pp. 209–234.

    Google Scholar 

  16. L. Valka, M. Holtzmann, and I. Dlouhy, “The role of microstructure in brittle fracture behaviour of lowalloy tempered bainitic steel,” Mater. Sci. Eng., A234-236, 723–726 (1977).

    Google Scholar 

  17. I. Dlouhy, V. Kozak, L. Valka, and M. Holtzmann, “The susceptibility of local parameters to steel microstructure evaluated using Charpy type specimen,” in: J. Phys. IV Coloq. C6, Suppl. to J. Phys. III 6 (1996), pp. 205–214.

    Google Scholar 

  18. S. A. Kotrechko and Yu. Ya. Meshkov, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of concentration of stresses. Part 2. Theoretical representations,” Probl. Prochn., No. 3, 5–16 (1999).

    Google Scholar 

  19. S. A. Kotrechko and Yu. Ya. Meshkov, “Fundamentals of the physical theory of quasibrittle fracture of polycrystalline metals in inhomogeneous fields generated by stress concentrators,” Metallofiz. Noveish. Tekhnol., 20, No. 4, 46–58 (1998).

    Google Scholar 

  20. K. Kuhne, Einfluss des Spannungszustandes und des Gefüges auf die Spaltbruchspannung von Baustahlen, BRD, Aachen (1982).

    Google Scholar 

  21. Lin Tsann, A. G. Evans, and R. O. Ritchie, “Statistical analysis of cleavage fracture ahead of sharp cracks and rounded notches,” Acta Met., 34, No. 11, 2205–2216 (1986).

    Google Scholar 

  22. S. A. Kotrechko, “A statistical model of brittle fracture of polycrystalline metals,” Metallofiz. Noveish. Tekhnol., 16, No. 10, 37–49 (1994).

    Google Scholar 

  23. P. M. Vitvitskii and S. Yu. Popina, Strength and Criteria of Brittle Fracture of Stochastically Defective Bodies [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  24. A. V. Gur'ev and E. P. Bogdanov, “The influence of structural stresses on the strength of polycrystalline materials,” Probl. Prochn., No. 1, 68–73 (1984).

    Google Scholar 

  25. S. A. Kotrechko, “On the influence of the longdistance fields of microstresses on the loss of stability of incipient cracks in polycrystals,” Metallofiz. Noveish. Tekhnol., 16, No. 7, 60–64 (1994).

    Google Scholar 

  26. V. V. Panasyuk, Ultimate Equilibrium of Brittle Cracked Bodies [in Russian], Naukova Dumka, Kiev (1968).

    Google Scholar 

  27. V. I. Mossakovskii and M. T. Rybka, “An attempt at construction of the theory of strength for brittle materials based on the Griffith energetic ideas,” Prikl. Mat. Mekh., 29, No. 2, 291–296 (1965).

    Google Scholar 

  28. J. Sun and J. D. Boyd, “Cleavage stress on the delamination plane of a plate steel,” in: Proceeding of the Ninth International Conf. on Fracture (Sydney, April 1997), Sydney (1997), p. 507.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotrechko, S.O., Meshkov, Y.Y. Physical Fundamentals of a Local Approach to Analysis of Brittle Fracture of Metals and Alloys. Materials Science 37, 583–597 (2001). https://doi.org/10.1023/A:1013268620186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013268620186

Keywords

Navigation