Skip to main content
Log in

Creep and Long-Term Strength of Metals in Corrosive Media (Review)

  • Published:
Materials Science Aims and scope

Abstract

We present an analytical survey of experimental data on the influence of a corrosive medium on the characteristics of creep and long-term strength of metals. We also analyze basic phenomenological approaches to the modeling of this influence. Much prominence is given to the role of tensile and compressive stresses, comparison of the influence of vacuum and air, embrittlement under the action of a hydrogen-containing medium, the distinctive role of the surface layer of metals, and the scale effect of creep and long-term strength. We also discuss other specific features of the mechanical behavior of metals at high temperatures in corrosive media. We systematize different models of the analytical description of deformation and fracture of metals under the studied conditions. We show that the concept of a mechanical state equation supplemented by a system of kinetic relations is used most often. Within the framework of this approach, damaging of the material and various diffusion characteristics of the environment in the metal are usually applied as kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Nikitin, I. P. Komissarova, and M. B. Revzyuk (compilers), Heat Resistance of Structural Materials in the Power Plant Industry [in Russian], NPO TsKTI, Leningrad (1978).

    Google Scholar 

  2. R. H. Cook and R. P. Skelton, “Environmentdependence of the mechanical properties of metals at high temperature,” Int. Met. Rev., 19, 199–222 (1974).

    Google Scholar 

  3. A. M. Sukhotin and Yu. I. Archakov (editors), Corrosive Resistance of Equipment of the Chemical Industry. PetroleumRefining Industry: Handbook [in Russian], Khimiya, Leningrad (1990).

    Google Scholar 

  4. S. A. Shesterikov and A. M. Lokoshchenko, “Creep and longterm strength of metals,” in: “Mechanics of a Deformable Solid” [in Russian], Vol. 13, VINITI, Moscow (1980), pp. 3–104.

    Google Scholar 

  5. S. Osgerby and B. F. Dyson, “Effects of oxygen on creep performance: mechanisms and predictive modelling,” Mater. Sci. Technol., 6, No. 1, 2–8 (1990).

    Google Scholar 

  6. V. I. Nikitin, Physicochemical Phenomena upon the Action of Liquid Metals on Solid Metals [in Russian], Atomizdat, Moscow (1967).

    Google Scholar 

  7. V. I. Pokhmurs'kyi, “Investigations of the influence of hydrogen on metals at the Karpenko Physicomechanical Institute,” Fiz. Khim. Mekh. Mater., 33, No. 4, 25–38 (1997).

    Google Scholar 

  8. O. I. Steklov, Strength of Welded Structures in Corrosive Media [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  9. G. L. Shwarts and A. P. Akshantseva, “On the methods of prevention of corrosion cracking of Kh18N9T, Kh17N13M2T, and Kh17N13M3T steels,” in: Chem. Eng. Industry [in Russian], Issue 58, NIIkhimmash, Moscow (1972), pp. 10–23.

    Google Scholar 

  10. G. P. Mel'nikov, Durability of Structural Elements under Conditions of High Temperatures in Bench Tests [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  11. S. B. Newcomb, P. L. Harrison, and A. Whittaker, “Effects of interfacial stress on oxidation of mild steel,” Mater. Sci. Technol., 6, No. 1, 45–51 (1990).

    Google Scholar 

  12. L. N. Larikov and V. M. Tyshkevich, “Influence of air components on the heat resistance of refractory metals of the VIA group,” in: Effect of the Physicochemical Environment on the HighTemperature Strength of Metal Materials [in Russian], Nauka, Moscow (1974), pp. 21–27.

    Google Scholar 

  13. M. P. Matveeva, V. A. Morozov, A. M. Samarina, and S. A. Skotnikov, “Study of the heatresistance and hightemperature strength of chromenickel alloys in gaseous media,” in: Effect of the Physicochemical Environment on the HighTemperature Strength of Metal Materials [in Russian], Nauka, Moscow (1974), pp. 61–68.

    Google Scholar 

  14. G. G. Maksimovich, V. F. Shatinskii, E. M. Lyutyi et al., HighTemperature Serviceability of Refractory Metals and Alloys in Corrosive Media [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  15. V. V. Petrov, I. G. Ovchinnikov, and Yu. M. Shikhov, Analysis of Structural Elements Interacting with a Corrosive Medium [in Russian], Saratov Univ., Saratov (1987).

    Google Scholar 

  16. I. N. Frantsevich, R. F. Voitovich, and V. A. Lavrenko, HighTemperature Oxidation of Metals and Alloys [in Russian], Gostekhizdat Ukr. SSR, Kiev (1963).

    Google Scholar 

  17. D. D. Lawthers and M. J. Manjoine, “The effect of testing atmospheres on the creep rupture properties of molybdenumbase alloys at 1800°F,” in: R. F. Hehemann and G. Ault (editors), Conf. on High Temperature Mater. (Ohio, USA, April 16-17, 1957), New York (1959), pp. 486–497.

  18. B. J. Cane and R. D. Townsend, “Prediction of remaining life in lowalloy steels,” in: Flow and Fracture at Elevated Temperatures, Amer. Soc. for Metals, Ohio (1985), pp. 279–316.

    Google Scholar 

  19. I. S. Tsvilyuk, “A method for evaluation of the influence of environment on the characteristics of longterm hightemperature strength of metal materials,” Probl. Prochn., No. 3. 55–58 (1988).

    Google Scholar 

  20. R. R. Hough and R. Rolls, “The influence of oxidation on the hightemperature tensile creep of iron,” Met. Sci. J., 5, No. 11, 206–209 (1971).

    Google Scholar 

  21. R. H. Bricknell and D. A. Woodford, “The embrittlement of nickel following high temperature air exposure,” Met. Trans., A12, No. 3, 425–433 (1981).

    Google Scholar 

  22. M. J. Bennet, A. C. Roberts, M. W. Spindler, and D. H. Wells, “Interaction between oxidation and mechanical properties of 20Cr25NiNb stabilised stainless steel,” Mater. Sci. Technol., 6, No. 1, 56–68 (1990).

    Google Scholar 

  23. N. P. Drozd and G. G. Maksimovich, “Influence of air residual pressure on the hightemperature longterm strength of lowcarbon steel,” Fiz.Khim. Mekh. Mater., 5, No. 1, 16–20 (1969).

    Google Scholar 

  24. N. P. Drozd and G. G. Maksimovich, “Longterm strength of lowcarbon steel in environments of different purity,” Fiz.Khim. Mekh. Mater., 5, No. 4, 415–419 (1969).

    Google Scholar 

  25. A. V. Ryabchenkov and A. I. Maksimov, “Influence of the oxidation of metals on their hightemperaturestrength properties,” Metalloved. Term. Obrab. Met., No. 12, 21–26 (1968).

    Google Scholar 

  26. H. E. McCoy, “The influence of various gaseous environments on the creeprupture properties of nuclear materials selected for hightemperature service,” in: Proc. of the Conf. “Corrosion of Reactor Materials” (Salzburg, Austria, June 4-8, 1962), Vol. 1, Int. Atomic Energy Agency, Vienna (1962), pp. 263–296.

    Google Scholar 

  27. J. M. Francis and K. E. Hodgson, “Interaction of high temperature oxidation and creep processes in an austenitic steel,” Mater. Sci. Eng., 6, No. 5, 313–319 (1970).

    Google Scholar 

  28. M. Ohnami and R. Imamura, “Effect of vacuum on the longterm strength of polycrystalline materials at elevated temperatures,” J. Soc. Mater. Sci. Jpn., 27, No. 295, 370–376 (1978).

    Google Scholar 

  29. V. N. Fedirko, “Hightemperature physicochemical interaction of titanium and its alloys with gaseous media,” Fiz.Khim. Mekh. Mater., 26, No. 2, 48–53 (1990).

    Google Scholar 

  30. G. G. Maksimovich, V. N. Fedirko, and V. S. Pavlina, “Hightemperature interaction of structural materials with their environment,” Fiz.Khim. Mekh. Mater., 32, No. 3, 20–24 (1996).

    Google Scholar 

  31. G. P. Mel'nikov, Some Specific Features of the Operation of ThinWalled Pipes of Kh18N10T Steel under Conditions of High Temperature Creep [in Russian], Atomizdat, Moscow (1968).

    Google Scholar 

  32. Metals. A Method of LongTermStrength Tests, GOST 1014581 [in Russian], Gosstandart SSSR, Moscow (1981).

  33. Metals. A Method of Creep Tests, GOST 324881 [in Russian], Gosstandart SSSR, Moscow (1981).

  34. N. D. Sobolev, “On the scale effect in processes of longterm fracture,” Zavod. Lab., No. 9, 1118–1223 (1960).

    Google Scholar 

  35. I. A. Oding and Z. G. Fridman, “The role of surface layers in longterm fracture of metals under conditions of creep,” Zavod. Lab., No. 3, 329–332 (1959).

    Google Scholar 

  36. N. I. Afanas'ev, M. K. Kasymov, Yu. R. Kolobov, and I. V. Ratochka, “Influence of the scale factor on the creep of Ni3 Al alloy,” Probl. Prochn., No. 8, 120–122 (1989).

    Google Scholar 

  37. A. A. Klypin, V. D. Kurov, G. P. Mel'nikov, and Yu. P. Frolov, “Influence of the scale factor on the longterm strength of Kh18N9Ttype steels,” Probl. Prochn., No. 5, 39–41 (1989).

    Google Scholar 

  38. V. I. Nikitin and T. N. Grigor'eva, “Influence of ash deposits on the longterm strength of the material of gasturbine blades,” Fiz.Khim. Mekh. Mater., 8, No. 5, 19–26 (1972).

    Google Scholar 

  39. V. I. Nikitin and M. G. Taubina, “Scale effect at high temperature under static load,” Teploénergetika, No. 4, 52–58 (1965).

    Google Scholar 

  40. E. R. Golubovskii, “Longterm strength and criterion of fracture under a complex stressed state of ÉI698VD alloy,” Probl. Prochn., No. 8, 11–17 (1984).

    Google Scholar 

  41. V. D. Kurov, G. P. Mel'nikov, and V. D. Tokarev, “Influence of the scale factor on the time of fracture under conditions of creep of pipes of Kh18N10T steel at a temperature of 1123 K,” Mashinovedenie, No. 6, 107–108 (1967).

    Google Scholar 

  42. M. B. Asviyan, “On the procedure of investigation of the longterm strength of tubular specimens by hydrogen internal pressure,” Zavod. Lab., No. 11, 1385–1387 (1961).

    Google Scholar 

  43. L. A. Glikman, V. I. Deryabina, and V. P. Teodorovich, “Influence of hydrogen on the strength of steels at high temperatures and pressures,” in: Optimization of Metallurgical Processes [in Russian], Issue 5, Metallurgiya, Moscow (1971), pp. 258–266.

    Google Scholar 

  44. V. I. Betekhtin, V. I. Vladimirov, A. G. Kadomtsev, and A. I. Petrov, “Plastic deformation and fracture of crystalline bodies. Part 1. Deformation and propagation of microcracks,” Probl. Prochn., No. 7, 38–45 (1979).

    Google Scholar 

  45. V. I. Betekhtin, V. I. Vladimirov, A. I. Petrov, and A. G. Kadomtsev, “Microcracks in the nearsurface layers of deformed crystals,” Poverkhnost'. Fiz., Khim., Mekh., No. 7, 144–151 (1984).

    Google Scholar 

  46. Effect of Hydrogen on the Service Properties of Steel [in Russian], NTO, Irkutsk (1963).

  47. A. V. Shreider, A. V. Shparber, and Yu. I. Archakov, Effect of Hydrogen on Petroleum and Chemical Equipment [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  48. Yu. I. Archakov, Hydrogen Resistance of Steel [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  49. Yu. I. Archakov, Hydrogen Corrosion of Steel [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  50. P. A. Pavlov, B. A. Kadyrbekov, and V. A. Kolesnikov, Strength of Steels in Corrosive Media [in Russian], Nauka, AlmaAta (1987).

  51. Yu. I. Archakov, “A study of the rate of hydrogen corrosion of pipes of carbon steel,” Zh. Prikl. Khim., No. 11, 2547–2552 (1960).

    Google Scholar 

  52. Yu. I. Archakov, “Derivation of a relation for calculating the depth of decarburization,” Zh. Prikl. Khim., No. 11, 2553–2557 (1960).

    Google Scholar 

  53. Yu. I. Archakov, “On the hydrogen corrosion of steel,” in: Effect of Hydrogen on the Service Properties of Steel [in Russian], NTO, Irkutsk (1963), pp. 6–21.

    Google Scholar 

  54. M. B. Asviyan and I. A. Azizov, “Influence of hydrogen partial pressure on the longterm strength of steel,” in: Hydrogen Corrosion of Steels and Fight against It [in Russian], TsNIITÉneftekhim, Moscow (1967), pp. 38–42.

    Google Scholar 

  55. L. M. Bilyi and M. M. Shved, “Influence of hydrogen on the longterm strength of steels with different carbon concentrations,” Fiz.Khim. Mekh. Mater., 14, No. 6, 106–107 (1978).

    Google Scholar 

  56. N. N. Kolgatin, L. A. Glikman, and V. P. Teodorovich, “A procedure of longterm breaking tests of tubular specimens under hydrogen internal pressure at high temperatures,” Zavod. Lab., No. 9, 1098–1101 (1957).

    Google Scholar 

  57. N. N. Kolgatin, L. A. Glikman, V. P. Teodorovich, and V. I. Deryabina, “Longterm strength of steels in tests of tubular specimens under hydrogen internal pressure at high temperatures,” Metalloved. Term. Obrab. Met., No. 3, 19–24 (1959).

    Google Scholar 

  58. V. I. Deryabina, N. N. Kolgatin, and V. P. Teodorovich, “Influence of hydrogen on the longterm strength of steel pipes,” Khim. Mashinostr., No. 3, 22–26 (1962).

    Google Scholar 

  59. M. B. Asviyan and I. A. Azizov, “Influence of hydrogen on the mechanical properties of steel at high temperatures and pressures,” in: Methods of Determination and Investigation of the State of Gases in Metals [in Russian], Nauka, Moscow (1968), pp. 260–265.

    Google Scholar 

  60. A. P. Grabovetskii, “The time till fracture of steel hydrogenated under a complex stressed state,” Zashch. Met., 5, No. 3, 330 (1969).

    Google Scholar 

  61. T. D. Voznyi and V. V. Popovich, “Influence of the hydrostatic pressure of the medium on the longterm strength of Kh18N10T steel,” Fiz.Khim. Mekh. Mater., 8, No. 5, 62–64 (1972).

    Google Scholar 

  62. N. P. Chernykh, “Influence of hydrogen on the longterm strength of some steels,” in: Effect of Hydrogen on the Service Properties of Steel [in Russian], NTO, Irkutsk (1963), pp. 22–46.

    Google Scholar 

  63. C. J. McMahon, Jr., C. L. Briant, and S. K. Banerji, “Effect of hydrogen and admixtures on brittle fracture of steel,” in: Fracture Mechanics. Fracture of Materials [Russian translation], Mir, Moscow (1979), pp. 109–133.

    Google Scholar 

  64. V. M. Kozhevatova, “Analysis of the longterm strength of structural elements working in contact with hydrogencontaining media,” in: Dynamics and Strength of Machines [in Russian], Issue 43, Vyshcha Shkola, Kharkov (1986), pp. 51–60.

    Google Scholar 

  65. V. Guttmann and M. Merz (editors), Proc. of the European Symp. “Corrosion and Mechanical Stress at High Temperatures” (Petten, Netherlands, May 1980), Appl. Sci. Publ., London (1981).

    Google Scholar 

  66. V. I. Nikitin and T. N. Grigor'eva, “Influence of calorizing of a nickelbased alloy on its longterm strength in some media,” Fiz.Khim. Mekh. Mater., 10, No. 1, 7–12 (1974).

    Google Scholar 

  67. J. K. Solberg and H. Thon, “Creep/corrosion of two nickel alloys in combustion gas,” Met. Trans., A14, No. 6, 1213–1221 (1983).

    Google Scholar 

  68. I. N. Bogachev, Yu. G. Veksler, V. G. Sorokin et al., “A study of the strength of alloys for turbine blades in supersonic gas flows,” Probl. Prochn., No. 2, 85–87 (1974).

    Google Scholar 

  69. V. N. Kiselevskii, V. V. Kovalev, I. M. Neklyudov, and L. S. Ozhigov, “Resistance of austenitic stainless steel to corrosion cracking under stress in iodine medium,” Probl. Prochn., No. 12, 12–17 (1993).

    Google Scholar 

  70. A. N. Daineko, V. M. Dolinskii, V. A. Kachanov, and T. E. Tsenta, “A procedure for determining the allowable stresses and durability of structural materials in chloridecontaining media from the viewpoint of corrosion cracking,” in: Mechanics of Structures Working under the Action of Corrosive Media [in Russian], Saratov Politekhn. Inst., Saratov (1987), pp. 36–38.

    Google Scholar 

  71. E. N. Derevyankina, “Account for the influence of a corrosively active medium on the durability of polymeric structures,” in: Applied Problems of the Strength and Stability of Deformable Systems in Corrosive Media [in Russian], Saratov Politekhn. Inst., Saratov (1989), pp. 64–67.

    Google Scholar 

  72. O. N. Romaniv and G. N. Nikiforchin, Mechanics of the Corrosion Failure of Structural Materials [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  73. I. G. Ovchinnikov and Yu. M. Pochtman, “Analysis and rational designing of structures subjected to corrosive wear (review),” Fiz.Khim. Mekh. Mater., 27, No. 2, 7–19 (1991).

    Google Scholar 

  74. A. M. Lokoshchenko, Creep and LongTerm Strength of Metals in Corrosive Media [in Russian], Izd. MGU, Moscow (2000).

    Google Scholar 

  75. G. V. Akimov, Theory and Methods of Investigation of Metallic Corrosion [in Russian], Izd. Akad. Nauk SSSR, Moscow (1945).

    Google Scholar 

  76. G. V. Akimov, Foundations of the Theory of Corrosion and Protection of Metals [in Russian], Gos. Izd. Liter. po Chern. i Tsvet. Metallurgii, Moscow (1946).

    Google Scholar 

  77. V. G. Karpunin, S. I. Kleshchev, and M. S. Kornishin, “Calculation of plates and shells with regard for general corrosion,” in: Proc. of the 10th AllUnion Conf. on the Theory of Plates and Shells [in Russian], Vol. 1, Metsniereba, Tbilisi (1975), pp. 166–174.

    Google Scholar 

  78. M. S. Kornishin and V. G. Karpunin, “On the stability of plates and shells with regard for general corrosion,” in: Proc. of the Sem. on the Theory of Shells [in Russian], Issue 6, Kazan Fiz.Tekh. Inst., Kazan (1975), pp. 58–66.

    Google Scholar 

  79. É. M. Gutman, Mechanochemistry of Metals and Rust Protection [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  80. É. M. Gutman, Mechanochemistry of Metals and Rust Protection [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  81. I. G. Ovchinnikov and Kh. A. Sabitov, “Determination of the stressstrain state and durability of cylindrical shells with regard for corrosive wear,” Stroit. Mekh. Raschet Sooruzh., No. 1, 13–17 (1986).

    Google Scholar 

  82. L. Ya. Zikerman, Diagnostics of the Corrosion of Pipelines with the Application of Computers [in Russian], Nedra, Moscow (1977).

    Google Scholar 

  83. I. G. Ovchinnikov and L. L. Eliseev, “Application of a logistic equation for the description of corrosion failure,” Fiz.Khim. Mekh. Mater., 17, No. 6, 30–35 (1981).

    Google Scholar 

  84. I. G. Ovchinnikov, “On one model of corrosion failure,” in: Mechanics of Deformable Solids [in Russian], Issue 6, Saratov Univ., Saratov (1979), pp. 183–188.

    Google Scholar 

  85. V. V. Petrov, I. G. Ovchinnikov, and V. K. Inozemtsev, Deformation of Structural Elements of a Nonlinear Inhomogeneous Material with Different Moduli [in Russian], Saratov Univ., Saratov (1989).

    Google Scholar 

  86. I. G. Ovchinnikov, “Account for the influence of a liquidmetal medium on the kinetics of fracture of a cylindrical pipe,” in: Deformation of Materials and Structural Elements in Corrosive Media [in Russian], Saratov Politekhn. Inst., Saratov (1983), pp. 12–19.

    Google Scholar 

  87. A. R. Rzhanitsyn, “Theory of longterm strength under arbitrary uniaxial and biaxial loading,” Stroit. Mekh. Raschet Sooruzh., No. 4, 25–29 (1975).

    Google Scholar 

  88. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscov (1966).

    Google Scholar 

  89. A. M. Lokoshchenko, “Dependence of the characteristics of creep and longterm strength on the crosssectional dimensions of specimens,” Fiz.Khim. Mekh. Mater., 33, No. 1, 70–74 (1997).

    Google Scholar 

  90. A. M. Lokochtchenko, “The dependence of creep and creep rupture characteristics from dimensions of specimens crosssection,” in: 5th Int. Symp. on Creep and Coupled Processes (Bialowieza, Poland, September 1995), Bialystok, Poland (1996), pp. 103–108.

    Google Scholar 

  91. A. M. Lokoshchenko, “Influence of the scale factor on longterm strength,” Probl. Prochn., No. 3, 13–18 (1995).

    Google Scholar 

  92. A. M. Lokshchenko, “Dependence of the characteristics of longterm strength on the parameters of the cross section of specimens,” Izv. Vyssh. Uchebn. Zaved., Mashinostroenie, No. 4-6, 5–11 (1995).

    Google Scholar 

  93. G. G. Maksimovich, V. S. Pavlina, and R. Yu. Skitskii, “Longterm strength of deformed materials under conditions of physicochemical actions,” Fiz.Khim. Mekh. Mater., 12, No. 5, 85–87 (1976).

    Google Scholar 

  94. V. S. Pavlina and Ya. S. Matychak, “Generalized conditions of mass transfer and diffusion processes in threecomponent alloys,” Fiz.Khim. Mekh. Mater., 15, No. 1, 41–48 (1979).

    Google Scholar 

  95. V. S. Pavlina and Ya. S. Matychak, “Diffusion saturation of alloys under conditions of complexformation,” Fiz.Khim. Mekh. Mater., 20, No. 6, 29–34 (1984).

    Google Scholar 

  96. V. S. Pavlina, V. N. Fedirko, Ya. S. Matychak, and T. S. Tarlupa, “Analysis of the kinetics of sublimation of alloying elements of alloys with regard for chemical transformations,” Fiz.Khim. Mekh. Mater., 21, No. 6, 60–64 (1985).

    Google Scholar 

  97. G. G. Maksimovich, V. N. Fedirko, V. S. Pavlina et al., “Modeling of the processes of hightemperature gas corrosion of titanium alloys in vacuum,” Fiz.Khim. Mekh. Mater., 26, No. 6, 29–34 (1990).

    Google Scholar 

  98. I. G. Ovchinnikov and V. V. Petrov, “Mathematical modeling of the process of interaction between structural elements and corrosive media,” in: Deformation of Materials and Structural Elements in Corrosive Media [in Russian], Saratov Politekhn. Inst., Saratov (1983), pp. 3–11.

    Google Scholar 

  99. E. R. Garbuz, “Longterm strength of a round bar under torsion with regard for the influence of hydrogen diffusion,” in: Deformation of Materials and Structural Elements in Corrosive Media [in Russian], Saratov Politekhn. Inst., Saratov (1983), pp. 25–29.

    Google Scholar 

  100. I. G. Ovchinnikov and M. S. Dvorkin, “Modeling of the kinetics of deformation of structural elements with regard for the work of the oxidized layer,” in: Problems of Strength of Materials and Structures Interacting with Corrosive Media [in Russian], Saratov Tekhn. Univ., Saratov (1994), pp. 56–66.

    Google Scholar 

  101. V. M. Kozhevatova and I. I. Kolyada, “Cylindrical bending of a plate under onesided pressure of highparameter hydrogen,” in: Serviceability of Materials and Structural Elements under the Action of Corrosive Media [in Russian], Saratov Politekhn. Inst., Saratov (1986), pp. 36–40.

    Google Scholar 

  102. I. G. Ovchinnikov, A. Yu. Salikov, and S. V. Kolesnikov, “Stressed state and durability of a round plate subjected to hydrogen corrosion,” in: Proc. of the 16th Int. Conf. on the Theory of Plates and Shells [in Russian], Vol. 3, Nizhnii Novgorod (1994), pp. 163–168.

    Google Scholar 

  103. A. M. Lokoshchenko and D. A. Kulagin, “Analysis of the scale effect of longterm strength,” in: Proc. of the 1st Int. Seminar “Modern Strength Problems” [in Russian] (Novgorod, October 15-18, 1997), Vol. 1, Part 2, Novgorod Univ., Novgorod (1997), pp. 229–235.

    Google Scholar 

  104. A. M. Lokochtchenko and D. A. Kulagin, “Mutual influence of diffusion and creep rupture processes,” in: 6th Int. Symp. on Creep and Coupled Processes (Bialowieza, Poland, September 23-25, 1998), Bialystok, Poland (1998), pp. 323–332.

  105. V. I. Astaf'ev and L. K. Shiryaeva, “Accumulation of damage in metals under conditions of stresscorrosion cracking,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 115–124 (1997).

    Google Scholar 

  106. V. I. Astaf'ev and L. K. Shiryaeva, Accumulation of Damage and StressCorrosion Cracking of Metals [in Russian], Samara Univ., Samara (1998).

    Google Scholar 

  107. V. L. Danilov and S. V. Zarubin, “Steel creep and creep rupture strength in environment containing hydrogen,” in: R. K. Penny (editor), Proc. of the Conf. “Ageing of Materials and Methods for the Assessment of Lifetimes of Engineering Plant” (Cape Town, South Africa, April 21-25, 1997), Balkema, Rotterdam (1997), pp. 113–116.

  108. L. I. Ogorodov and A. S. Belov, “Experimental verification of the efficiency of the kinetic equations of forcetype damages in the description of longterm fracture of a heatresistant alloy in a corrosive medium under conditions of nonstationary loading,” Probl. Prochn., No. 3, 19–27 (1995).

    Google Scholar 

  109. A. M. Lokoshchenko and S. A. Shesterikov, “Analysis of the influence of environment on longterm strength with the use of an approximate solution of the diffusion equation,” in: Proc. of the 2nd Int. Seminar “Modern Strength Problems” (Staraya Russa, September 5-9, 1998), Vol. 1 [in Russian], Novgorod Univ., Novgorod (1998), pp. 142–148.

    Google Scholar 

  110. A. M. Lokoshchenko and S. A. Shesterikov, “Modeling of the influence of environment on creep and longterm strength,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 122–131 (1998).

    Google Scholar 

  111. D. A. Kulagin, “A method of approximate solution of twodimensional diffusion equations,” in: Proc. of the 3rd Int. Seminar “Modern Strength Problems” (Staraya Russa, September 20-24, 1999), Vol. 2 [in Russian], Novgorod Univ., Novgorod (1999), pp. 114–117.

    Google Scholar 

  112. A. M. Lokoshchenko and N. V. Luk'yanova, “Approximate methods of the solution of the diffusion equation,” in: “Modern Strength Problems” [in Russian] (Staraya Russa, September 18-22, 2000), Vol. 2, Novgorod Univ., Novgorod (2000), pp. 168–172.

    Google Scholar 

  113. G. A. Prantskyavichyus, “On the influence of environment on the longterm strength of materials in brittle fracture,” Tr. Akad. Nauk Lit. SSR, Ser. B, No. 3 (88), 147–154 (1975).

    Google Scholar 

  114. E. A. Troyanskii, “Dependence of the time till fracture on stress for boiler steels with regard for the influence of environment,” in: Trans. of the Moscow Energy Inst. [in Russian], Issue 269 (1975), pp. 137–142.

    Google Scholar 

  115. Yu. N. Rabotnov, “On the possible mechanism of fracture of metals in a corrosive medium,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 6, 53–56 (1954).

    Google Scholar 

  116. R. V. Gol'dshtein, V. M. Entov, and B. R. Pavlovskii, “A model of propagation of hydrogen cracks in metals,” Dokl. Akad. Nauk SSSR, 237, No. 4, 828–831 (1977).

    Google Scholar 

  117. R. V. Gol'dshtein, A. F. Zazovskii, and B. P. Pavlovskii, “Development of diskshaped exfoliation in a steel sheet under the action of tension and hydrogenation,” Fiz.Khim. Mekh. Mater., 21, No. 5, 100–105 (1985).

    Google Scholar 

  118. R. V. Gol'dshtein, N. V. Iskhakov, D. M. Klimov et al., “Some problems of predicting and ensuring the lifetime of equipment for the oil and gas industry,” Probl. Mashinostr. Nadezhn. Mashin, No. 6, 3–11 (1990).

    Google Scholar 

  119. R. V. Gol'dshtein and N. M. Osipenko, “A model of fracture of pipeline steel under hydrogenation,” Fiz.Khim. Mekh. Mater., 32, No. 3, 25–33 (1996).

    Google Scholar 

  120. V. I. Astaf'ev, D. Yu. Raguzin, T. V. Tetyueva, and P. S. Shmelev, “Evaluation of the tendency of steels to sulfide corrosion cracking under stress,” Zavod. Lab., No. 1, 37–40 (1994).

    Google Scholar 

  121. N. I. Tym'yak and A. E. Andreikiv, “Determination of crackgrowth rate under conditions of the combined action of static loads and a corrosively active medium,” Fiz.Khim. Mekh. Mater., 31, No. 2, 68–74 (1995).

    Google Scholar 

  122. T. Takasugi and V. Vitek, “Effect of surface diffusion on creep fracture,” Met. Trans., A12, No. 4, 659–667 (1981).

    Google Scholar 

  123. T. Yokobori, T. Nemoto, K. Sato, and T. Yamada, “Numerical analysis on hydrogen diffusion in a solid around the crack tip,” Nihon kikai gakkai ronbunshu. Trans. Jap. Soc. Mech. Eng., Ser. A, 59, No. 565, 2120–2127 (1993).

    Google Scholar 

  124. V. Ya. Flaks, “A method for evaluation of the resistance of materials to allround corrosion,” Zashch. Met., No. 6, 745–749 (1977).

    Google Scholar 

  125. R. A. Arutyunyan, “A probabilistic model of fracture due to pitting corrosion,” Probl. Prochn., No. 12, 106–108 (1989).

    Google Scholar 

  126. N. V. Makukha, “A probabilistic approach to the analysis and optimal designing of structural elements interacting with a corrosive medium,” in: Mathematical and Electronic Modeling in Machine Building [in Russian], Kiev (1989), pp. 84–89.

  127. T. H. Grundy, T. J. Davies, and D. A. Ryder, “A new statistical model of the hydrogen embrittlement of steel,” J. Mater. Sci., 18, No. 10, 3128–3136 (1983).

    Google Scholar 

  128. A. M. Lokoshchenko and D. A. Kulagin, “Longterm strength under a plane stressed state with regard for the influence of environment,” in: Proc. of the 3rd Int. Sem. “Modern Strength Problems” [in Russian] (Staraya Russa, September 20-24, 1999), Vol. 1, Novgorod Univ., Novgorod (1999), pp. 114–117.

    Google Scholar 

  129. D. A. Kulagin and A. M. Lokoshchenko, “Analysis of the influence of environment on longterm strength with the use of a probabilistic approach,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 124–133 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokoshchenko, A.M. Creep and Long-Term Strength of Metals in Corrosive Media (Review). Materials Science 37, 559–572 (2001). https://doi.org/10.1023/A:1013264519277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013264519277

Keywords

Navigation