Skip to main content
Log in

Fermi Surface Map of the Single-Layer Bi-Cuprate Bi2Sr2 − xLaxCuO6 + δ at Optimal Doping

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

A first Fermi surface map of a single-layer high-T c superconductor is presented. The experiments were carried out on optimally doped Bi2Sr2 − xLaxCuO6 + δ (x = 0.40) with synchrotron radiation which allow to discuss in detail the strong polarization dependence of the emissions near the Fermi edge. For the cuprates, only little is known about the impact of the electron–photon matrix element determining the photoelectron intensity. For the example of the model layered superconductor Bi2Sr2 − xLaxCuO6 + δ, it will be demonstrated that the polarization geometry has significant influence on the energy distribution curves at E F, and consequently also for the determination of the topology and character of the Fermi surface (FS) by angle-resolved photoemission. For further clarification also, a FS map of the n = 2 material Bi-2212 has been measured applying a different polarization geometry as previously used by Saini et al. In the context of the current debate on the character of the FS of Bi-cuprates, our results confirm a hole-like FS for n = 1 as well as for n = 2 material, what might be the universal FS for high-T c superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Z.–X. Shen and D. S. Dessau, Phys. Rep. 253, 1 (1995); M. Randeria and J. C. Campuzano, cond–mat/9709107 (1997); T. Tohyama and S. Maekawa, Supercond. Sci. Technol. 13, 17 (2000).

    Google Scholar 

  2. H. Ding, A. F. Bellman, J. C. Campuzano, M. Randeria, M. R. Norman, T. Yokoya, T. Takahashi, H. Katayama–Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, and G. P. Brivio, Phys. Rev. Lett. 76, 1533 (1996).

    Google Scholar 

  3. Y.–D. Chuang, A. D. Gromko, D. S. Dessau, Y. Aiura, Y. Yamiguchi, K. Oka, A. J. Arko, J. Joyce, H. Eisaki, S. I. Uchida, K. Nakamura, and Y. Ando, Phys. Rev. Lett. 83, 3717 (1999).

    Google Scholar 

  4. S. V. Borisenko, M. S. Golden, S. Legner, T. Pichler, C. Dürr, M. Knupfer, J. Fink, G. Yang, S. Abell, and H. Berger, Phys. Rev. Lett. 84, 4453 (2000); S.V. Borisenko,A.A.Kordyuk, S. Legner, C. Dürr, M. Knupfer, M. S. Golden, J. Fink, K. Nenkov, D. Eckert, G. Yang, S. Abell, H. Berger, L. Ferro, B. Liang, A. Maliouk, C. T. Lin, and B. Keimer, cond–mat/0102323 (2001).

    Google Scholar 

  5. P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, and K. Kadowski, Phys. Rev. Lett. 72, 2757 (1994).

    Google Scholar 

  6. H. M. Fretwell, A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Takahashi, and K. Kadowaki, Phys. Rev. Lett. 84, 4449 (2000).

    Google Scholar 

  7. S. Legner, S. V. Borisenko, C. Dürr, T. Pichler, M. Knupfer, M. S. Golden, J. Fink, G. Yang, S. Abell, H. Berger, R. Müller, C. Janowitz, and G. Reichardt, Phys. Rev. B 62, 154 (2000).

    Google Scholar 

  8. D. L. Feng, W. J. Zheng, K. M. Shen, D. H. Lu, F. Ronning, J.–I. Shimoyama, K. Kishio, G. Gu, D. Van der Marel, and Z.–X. Shen, cond–mat/9908056 (1999).

  9. P. V. Bogdanov, A. Lanzara, S. A. Kellar, X. J. Zhou, E. D. Lu, W. Zheng, G. Gu, K. Kishio, J.–I. Shimoyama, Z. Hussain, and Z.–X. Shen, Phys. Rev. Lett. 85, 2581 (2000).

    Google Scholar 

  10. P. V. Bogdanov, A. Lanzara, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, J.–I. Shimoyama, K. Kishio, Z. Hussain, and Z.–X. Shen, cond–mat/0005394 (2000).

  11. A. D. Gromko, Y.–D. Chuang, D. S. Dessau, K. Nakamura, and Y. Ando, cond–mat/003017 (2000).

  12. R. Müller, C. Janowitz, M. Schneider, H. Dwelk, A. Krapf, and R. Manzke, Physica C 341, 2109 (2000).

    Google Scholar 

  13. J. Mesot, M. Randeria, M. R. Norman, A. Kaminski, H. M. Fretwell, J. C. Campuzano, H. Ding, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, I. Chong, T. Terashima, M. Takano, T. Mochiku, and K. Kadowaki, Phys. Rev. B 63, 4516 (2001).

    Google Scholar 

  14. T. Sato, T. Kamiyama, Y. Naitoh, T. Takahashi, I. Chong, T. Terashima, and M. Takano, Phys. Rev. B 63, 132502 (2001); T. Sato, T. Kamiyama, T. Takahashi, J. Mesot, A. Kaminski, J.C. Campuzano, H. M. Fretwell, T. Takeuchi, H. Ding, I. Chong, T. Terashima, and M. Takano, Phys. Rev. B 64, 4502 (2001).

    Google Scholar 

  15. R. Manzke, R. Müller, C. Janowitz, M. Schneider, A. Krapf, and H. Dwelk, Phys. Rev. B (Rapid Commun.) 63, 100504 (2001).

    Google Scholar 

  16. R. Manzke, R. Müller, C. Janowitz, M. Schneider, A. Krapf, A. Müller, and H. Dwelk, J. Supercond. 13, 883 (2000).

    Google Scholar 

  17. A. Krapf et al. (in press); partly in C. Janowitz, R. Müller, T. Plake, A. Müller, A. Krapf, H. Dwelk, and R. Manzke, Physica B 259, 1134 (1999).

  18. H. Nameki, M. Kikuchi, and Y. Syono, Physica C 234, 245 (1994).

    Google Scholar 

  19. K. Rossnagel, L. Kipp, M. Skibowski, and S. Harm, Nucl. Instrum. Methods Phys. Res. A 467, 1485 (2001).

    Google Scholar 

  20. W. B. Peatman, J. Bahrdt, F. Eggenstein, G. Reichardt, and F. Senf, Rev. Sci. Instr. 66, 2810 (1995).

    Google Scholar 

  21. C. Janowitz, R. Müller, T. Plake, T. Böker, and R. Manzke, J. Electr. Spectr. Rel. Phen. 105, 43 (1999).

    Google Scholar 

  22. L. Kipp, K. Rossnagel, C. Solterbeck, T. Strasser, W. Schattke, and M. Skibowski, Phys. Rev. Lett. 83, 5551 (1999).

    Google Scholar 

  23. N. L. Saini, J. Avila, A. Bianconi, A. Lanzara, M. C. Asensio, S. Tajima, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 79, 3467 (1997).

    Google Scholar 

  24. L. N. Saini, J. Avila, M. C. Asensio, S. Tajima, G. D. Gu, N. Koshizuka, A. Lanzara, and A. Bianconi, Phys. Rev. B (Rapid Commun.) 57, 11101 (1998).

    Google Scholar 

  25. N. L. Saini, A. Bianconi, A. Lanzara, J. Avila, M. C. Asensio, S. Tajima, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 82, 2619 (1999).

    Google Scholar 

  26. J. Mesot, M. R. Norman, H. Ding, and J. C. Campuzano, Phys. Rev. Lett. 82, 2618 (1999).

    Google Scholar 

  27. E. R. Ratner, Z.–X. Shen, D. S. Dessau, B. O. Wells, D. S. Marshall, D. M. King, W. E. Spicer, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. B 48, 10482 (1993).

    Google Scholar 

  28. M. Lindros, A. Bansil, K. Gofron, J. C. Campuzano, H. Ding, R. Liu, and B. W. Veal, Physica C 212, 347 (1993).

    Google Scholar 

  29. G. W. Gobeli, F. G. Allen, and E. O. Kane, Phys. Rev. Lett. 12, 94 (1964).

    Google Scholar 

  30. E. Dietz, H. Becker, and U. Gerhardt, Phys. Rev. Lett. 36, 1397 (1976).

    Google Scholar 

  31. N. L. Saini, A. Bianconi, A. Lanzara, J. Avila, M. C. Asensio, S. Tajima, G. D. Gu, and N. Koshizuka, Physica C 341, 2071 (2000).

    Google Scholar 

  32. C. Janowitz, R. Müller, L. Dudy, A. Krapf, R. Manzke, C. Ast, and H. Höchst, cond–mat/0107089.

  33. P. W. Anderson, The Theory of Superconductivity in the High–T c Cuprates (Princeton University Press, Princeton, New Jersey, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, R., Schneider, M., Janowitz, C. et al. Fermi Surface Map of the Single-Layer Bi-Cuprate Bi2Sr2 − xLaxCuO6 + δ at Optimal Doping. Journal of Superconductivity 14, 659–668 (2001). https://doi.org/10.1023/A:1013235407579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013235407579

Navigation