Skip to main content
Log in

Conditions for the Formation of a Nonequilibrium Nonstoichiometric Layer on Pyrrhotite in Acid Solutions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Conditions for the formation of a nonequilibrium nonstoichiometric metal-deficient layer (NL) on natural pyrrhotites are studied, together with the NL electroreduction and the role NL plays in a nonoxidizing dissolution of pyrrhotite in solutions of sulfuric and hydrochloric acids. To estimate the NL weight, the charge connected with a cathodic peak at about –0.2 V (Ag/AgCl) is used. The peak reflects the irreversible reduction of NL with the formation of hydrogen sulfide, which is confirmed by SEM and XES data. Bulky NL forms in 0.5 M H2SO4at –0.1 to 0.0 V, where the nonoxidizing dissolution rate sharply alters, and at 0.5–1.1 V, where the pyrrhotite oxidation rate is high. The NL growth is controlled by solid-state diffusion, whereas nonoxidizing dissolution of iron is limited by diffusion at 20–30°C and a kinetic stage of dissolution of sulfur at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Vaughan, D.J. and Craig, J.R., Mineral Chemistry of Metal Sulfides, Cambridge: Cambridge Univ. Press, 1978.

    Google Scholar 

  2. Nicol, M.J. and Scott, P.D., J. S. Afr. Inst. Min. Metall., 1979, vol. 79, p. 298.

    Google Scholar 

  3. Hamilton, I.C. and Woods, R., J. Electroanal. Chem., 1981, vol. 118, p. 327.

    Google Scholar 

  4. Hodgson, M. and Agar, G.E., Proc. 2nd Int. Symp. on Electrochemistry in Mineral and Metal Processing, Richardson, P.E., Srinivasan, S., and Woods, R., Eds., Pennington: The Electrochemical Society, 1984, p. 185.

    Google Scholar 

  5. Radyushkina, K.A., Vigdergauz, V.E., Tarasevich, M.R., and Chanturiya, V.A., Elektrokhimiya, 1986, vol. 22, p. 1394.

    Google Scholar 

  6. Chanturiya, V.A. and Vigdergauz, V.E., Elektrokhimiya sul'fidov: Teoriya i praktika flotatsii (The Electrochemistry of Sulfides: A Theory and Practical Applications of Flotation), Moscow: Nauka, 1993.

    Google Scholar 

  7. Makarov, D.V., Makarov, V.N., and Vasil'eva, T.N., Zh. Prikl. Khim. (St. Petersburg), 2000, vol. 73, p. 425.

    Google Scholar 

  8. Chanturiya, V.A., Makarov, V.N., Makarov, D.V., et al., Elektrokhimiya, 1999, vol. 35, p. 852.

    Google Scholar 

  9. Buckley, A.N., Hamilton, I.C., and Woods, R., Proc. 2nd Int. Symp. on Electrochemistry in Mineral and Metal Processing, Richardson, P.E., Srinivasan, S., and Woods, R., Eds., Pennington: The Electrochemical Society, 1984, p. 259.

    Google Scholar 

  10. Buckley, A.N., Hamilton, I.C., and Woods, R., Flotation of Sulphide Minerals, Føssberg, K.S.E., Ed., Amsterdam: Elsevier, 1985, p. 41.

    Google Scholar 

  11. Buckley, A.N. and Woods, R., Appl. Surf. Sci., 1985, vol. 20, p. 472.

    Google Scholar 

  12. Buckley, A.N. and Woods, R., Appl. Surf. Sci., 1985, vol. 22/23, p. 280.

    Google Scholar 

  13. Timoshenko, E.M., Sobol', S.I., Nagornaya, T.V., and Morozova, V.A., Tsvetn. Met. (Moscow), 1991, no. 11, p. 17.

    Google Scholar 

  14. Jones, C.F., LeCount, S., Smart, R., and White, T.J., Appl. Surf. Sci., 1992, vol. 55, p. 65.

    Google Scholar 

  15. Mikhlin, Yu.L., Tomashevich, E.V., Varnek, V.A., and Asanov, I.P., Zh. Neorg. Khim., 1995, vol. 40, p. 1247.

    Google Scholar 

  16. Mikhlin, Yu.L., Tomashevich, Ye.V., Pashkov, G.L., et al., Appl. Surf. Sci., 1998, vol. 125, p. 73.

    Google Scholar 

  17. Pratt, A.R., Nesbitt, H.W., and Muir, I.J., Geochim. Cosmochim. Acta, 1994, vol. 58, p. 5147.

    Google Scholar 

  18. Pratt, A.R. and Nesbitt, H.W., Am. J. Sci., 1997, vol. 297, p. 807.

    Google Scholar 

  19. Mikhlin, Yu., Varnek, V., Asanov, I., et al., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 4393.

    Google Scholar 

  20. Thomas, J.E., Jones, C.F., Skinner, W.M., et al., Geochim. Cosmochim. Acta, 1998, vol. 62, p. 1555.

    Google Scholar 

  21. Thomas, J., Smart, R., and Skinner, W., Miner. Eng., 2000, vol. 13, p. 1149.

    Google Scholar 

  22. Mikhlin, Yu., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 5672.

    Google Scholar 

  23. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., New York: Wiley, 1983.

    Google Scholar 

  24. Pratt, A.R., Muir, I.J., and Nesbitt, H.W., Geochim. Cosmochim. Acta, 1994, vol. 58, p. 827.

    Google Scholar 

  25. Mott, N. and Davis, E., Electronic Processes in Non-Crystalline Materials, Oxford: Oxford Univ. Press, 1979. Translated under the title Elektronnye protsessy v nekristallicheskikh veshchestvakh, Moscow: Mir, 1982.

    Google Scholar 

  26. Kastner, M. and Fritzsche, H., Philos. Mag., 1978, vol. 37, p. 199.

    Google Scholar 

  27. Elektronnye yavleniya v khal'kogenidnykh stekloobraznykh poluprovodnikakh (Electronic Phenomena in Chalcogenide Vitreous Semiconductors), Tsendin, K.D., Ed., St. Petersburg: Nauka, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuklinskii, A.V., Mikhlin, Y.L., Pashkov, G.L. et al. Conditions for the Formation of a Nonequilibrium Nonstoichiometric Layer on Pyrrhotite in Acid Solutions. Russian Journal of Electrochemistry 37, 1269–1276 (2001). https://doi.org/10.1023/A:1013231612008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013231612008

Keywords

Navigation