Skip to main content
Log in

Effect of secondary-phase segregation on the positive temperature coefficient in resistance characteristics of n-BaTiO3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Modifications in the positive temperature coefficient in resistance (PTCR) of n-BaTiO3 ceramics are brought about by specific additives such as Al2O3, B2O3 or SiO2, leading to the segregation of secondary phases such as BaAl6TiO12, BaB6TiO12 or BaTiSi3O9 at the grain boundaries. Segregation of barium aluminotitanates resulted in broad PTCR curves, whereas B2O3 addition gave rise to steeper jumps and SiO2 addition did not result in much broadening compared with donor-only doped samples. Microstructural studies clearly show the formation of a structurally coherent expitaxial second phase layer of barium aluminotitanate surrounding the BaTiO3 grains. Electron paramagnetic resonance investigations indicated barium vacancies, VBa, as the major electron trap centres which are activated across the tetragonal-to-cubic phase transition according to the process VX Ba + e′ ⇋ V′Ba. The grain size dependence of the intensity of the V′Ba signal indicated the concentration of these trap centers in the grain-boundary layer (GBL) regions. Further, the charge occupancy of these centres is modified by the secondary phases formed through grain-boundary segregation layers. BaAl6TiO12 gave rise to Al-O hole centres whereas no paramagnetic centres corresponding to boron could be detected on B2O3 addition. Such secondary phases, forming epitaxial layers over the BaTiO3 grains, modify the GBL region, rich in electron traps, surrounding the grain core. The complex impedance analyses support this three-layer structure, showing the corresponding contributions to the total resistance which can be assigned as R g, R gb and R secondary phase. The epitaxial second phase layers bring about inhomogeneity in the spatial distribution of acceptor states between the grain boundary and the grain bulk resulting in extended diffuse phase transition characteristics for the GBL regions in n-BaTiO3 ceramics. This can cause the GBL regions to have different transition temperatures from the grain bulk and a spread in energy levels of the associated GBL trap states, thus modifying the PTCR curves. An attempt has been made to explain the results based on the vibronic interactions applied to the mid-band-gap states in n-BaTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. HEYWANG, J. Mater. Sci. 6 (1971) 1214.

    Google Scholar 

  2. B. HUYBRECHTS, K. ISHIZAKI and M. TAKATA, J. Mater. Sci. 30 (1995) 2463.

    Google Scholar 

  3. J. DANIELS and R. WERNICKE, Philips Res. Rep. 31 (1976) 544.

    Google Scholar 

  4. G. KOSCHEK and E. KUBALEK, J. Amer. Ceram. Soc. 68 (1985) 582.

    Google Scholar 

  5. G. KOSCHEK, DKG 66 (1989) 128.

    Google Scholar 

  6. G. V. LEWIS, C. R. A. CATLOW and R. E. W. CASSELTON, J. Amer. Ceram. Soc. 68 (1985) 555.

    Google Scholar 

  7. G. H. JONKER, Mater. Res. Bull. 2 (1967) 401.

    Google Scholar 

  8. H. IGARASHI, S. HAYAKAWA and K. OKAZAKI, Jpn. J. Appl. Phys. 20 (1981) 135.

    Google Scholar 

  9. M. KUWABARA, Solid State Electron 27 (1984) 929.

    Google Scholar 

  10. A. B. ALLES, V. R. W. AMARAKOON and V. L. BURDICK, J. Amer. Ceram. Soc. 72 (1989) 148.

    Google Scholar 

  11. T. TAKAHASHI, Y. NAKANO and N. ICHINOSE, J. Ceram. Soc. Jpn 98 (1990) 879.

    Google Scholar 

  12. H. IHRIG, J. Amer. Ceram. Soc. 64 (1981) 617.

    Google Scholar 

  13. H. UEOKA and M. YODOGAWA, IEEE Trans. Manuf. Technol. 3 (1974) 77.

    Google Scholar 

  14. H. UEOKA, Ferroelectrics 7 (1974) 351.

    Google Scholar 

  15. Y. M. CHIANG and T. TAKAGI, J. Amer. Ceram. Soc. 73 (1990) 3286.

    Google Scholar 

  16. S. B. DESU and D. A. PAYNE, ibid. 73 (1990) 3416.

    Google Scholar 

  17. T. R. N. KUTTY, P. MURUGARAJ and N. S. GAJBHIYE, Mater. Res. Bull. 20 (1985) 565.

    Google Scholar 

  18. T. R. N. KUTTY, P. MURUGARAJ, Mater. Lett. 3 (1985) 195.

    Google Scholar 

  19. P. MURUGARAJ and T. R. N. KUTTY, J. Mater. Sci. Lett. 5 (1986) 171.

    Google Scholar 

  20. Y. MATSUO, M. FUJIMURA, H. SASAKI, K. NAGASE and S. HAYAKAWA, Ceram. Bull. 47 (1968) 292.

    Google Scholar 

  21. Y. MATSUO and H. SASAKI, J. Amer. Ceram. Soc. 54 (1971) 471.

    Google Scholar 

  22. T. FUKAMI and H. TSUCHIYA, Jpn. J. Appl. Phys. 18 (1979) 735.

    Google Scholar 

  23. S. WADA and S. ATSUMI, US Patent 4,055,438 (1977).

  24. N. FUJIKAWA and N. OTOKUMI, Ger. Offen. 1,941,280 (1978).

  25. H. F. CHENG, J. Appl. Phys. 66 (1989) 1382.

    Google Scholar 

  26. V. RAVI and T. R. N. KUTTY, J. Amer. Ceram. Soc. 75 (1992) 203.

    Google Scholar 

  27. T. R. N. KUTTY, P. MURUGARAJ and N. S. GAJBHIYE, Mater. Lett. 2 (1984) 396.

    Google Scholar 

  28. V. RAVI and T. R. N. KUTTY, J. Appl. Phys. 68 (1990) 4891.

    Google Scholar 

  29. T. R. N. KUTTY and V. RAVI, Appl. Phys. Lett. 59 (1991) 2691.

    Google Scholar 

  30. K. KUDAKA, K. HOZUMI and K. SASAKI, Amer. Ceram. Soc. Bull. 61 (1982) 1236.

    Google Scholar 

  31. N. S. GAJBHIYE and T. R. N. KUTTY, Bull. Electrochem. Soc. 2 (1986) 231.

    Google Scholar 

  32. S. S. EATON and G. R. EATON, Bull. Magn. Reson. 1 (1979) 130.

    Google Scholar 

  33. T. R. N. KUTTY and N. S. HARI, Mater. Lett. 34 (1998) 43.

    Google Scholar 

  34. M. DROFENIK, A. POPOVIC, L. IRMANCNIK, D. KOLAR and V. KARASEVEC, J. Amer. Ceram. Soc. 65 (1982) C203.

    Google Scholar 

  35. M. DROFENIK, A. POPOVIC and D. KOLAR, Amer. Ceram. Soc. Bull. 63 (1984) 702.

    Google Scholar 

  36. N. H. CHAN and D. M. SMYTH, J. Electrochem. Soc. 123 (1976) 1584.

    Google Scholar 

  37. YU. L. DANILYUK and E. V. KHARITONOV, Sov. Phys.—Solid State 6 (1964) 260.

    Google Scholar 

  38. J. ZITKOVA, K. ZDANSKY and Z. SROUBECK, Czech. J. Phys. B 17 (1967) 636.

    Google Scholar 

  39. S. M. ARIYA, T. N. VERBITSKAYA, N. H. ENDEN and W. WINTRUFF, J. Phys. Soc. Jpn (Suppl.) 28 (1970) 131.

    Google Scholar 

  40. H. IKUSHIMA and S. HAYAKAWA, J. Phys. Soc. Jpn 19 (1964) 1986.

    Google Scholar 

  41. M. NAKAHARA and T. MURAKAMI, J. Appl. Phys. 45 (1974) 9.

    Google Scholar 

  42. T. R. N. KUTTY, L. GOMATHI DEVI and P. MURUGARAJ, Mater. Res. Bull. 21 (1986) 1093.

    Google Scholar 

  43. T. R. N. KUTTY and N. S. HARI, Mater. Sci. Engng B (1998) (accepted).

  44. D. C. SINCLAIR and A. R. WEST, J. Appl. Phys. 66 (1989) 3850.

    Google Scholar 

  45. E. IGUCHI, N. KUBOTA, T. NAKAMORI, N. YAMAMOTO and K. J. LEE, Phys. Rev. B 43 (1991) 8646.

    Google Scholar 

  46. C. GILLOT, J. P. MICHENAUD, M. MAGLIONE and B. JANNOT, Solid State Commun. 84 (1992) 1033.

    Google Scholar 

  47. N. S. HARI, P. PADMINI and T. R. N. KUTTY, J. Mater. Sci.: Mater. Elec. 8 (1997) 15.

    Google Scholar 

  48. G. A. SMOLENSKY, J. Phys. Soc. Jpn (Suppl.) 28 (1970) 26.

    Google Scholar 

  49. V. I. FRITSBERG, in Proceedings of the International Meeting on Ferroelectricity, Iliffa, Prague, 1 (1966) 163.

    Google Scholar 

  50. A. J. BURGGRAAF and K. KEIZER, Mater. Res. Bull. 10 (1975) 521.

    Google Scholar 

  51. P. MURUGARAJ, T. R. N. KUTTY and M. SUBBARAO, J. Mater. Sci. 21 (1986) 3521.

    Google Scholar 

  52. W. G. SPITZER, R. C. MILLER, D. A. KLEINMAN and L. E. HOWARTH, Phys. Rev. 126 (1962) 1710.

    Google Scholar 

  53. J. HARADA, J. D. AXE and G. SHIRANE, Phys. Rev. B 4 (1971) 155.

    Google Scholar 

  54. H. VOGT, J. Appl. Phys. (Suppl. 2) 24 (1985) 112.

    Google Scholar 

  55. H. VOGT, J. A. SANJURJO and G. ROSSBROICH, Phys. Rev. B 26 (1982) 5904.

    Google Scholar 

  56. M. T. MASON and B. T. MATHIAS, Phys. Rev. 74 (1948) 1622.

    Google Scholar 

  57. R. COMES, M. LAMBERT and A. GUINIER, Solid State Commun. 6 (1968) 715.

    Google Scholar 

  58. A. M. QUITTET, M. LAMBERT and A. GUINIER, Solid State Phys. 12 (1973) 1053.

    Google Scholar 

  59. K. H. ESHES, H. BOCK and K. FISHER, Ferroelectrics 37 (1981) 507.

    Google Scholar 

  60. K. A. MÜLLER, W. BERLINGER, K. W. BLAZEY and J. ALBERS, Solid State Commun. 61 (1987) 21.

    Google Scholar 

  61. K. INOUE, Jpn. J. Appl. Phys. (Suppl. 2) 24 (1985) 107.

    Google Scholar 

  62. Idem., J. Physique, Colloq. C6 42 (1981) 430.

    Google Scholar 

  63. K. A. MÜLLER and W. BERLINGER, Phys. Rev. B 34 (1986) 6130.

    Google Scholar 

  64. H. T. MARTIREN and J. L. BURFOOT, J. Phys. C 7 (1979) 3182.

    Google Scholar 

  65. W. KÄNZIG and N. MAIKAFF, Helv. Phys. Acta 24 (1954) 343.

    Google Scholar 

  66. T. R. N. KUTTY and V. RAVI, Mater. Sci. Engng B25 (1995) 119.

    Google Scholar 

  67. I. B. BERSUKER and B. G. VEKHTER, Ferroelectrics 19 (1978) 137.

    Google Scholar 

  68. T. R. N. KUTTY and N. S. HARI, J. Phys. D 28 (1995) 371.

    Google Scholar 

  69. E. I. BONDARENKO, A. N. PAVLOV, I. P. RAEVSKIL, O. I. PROKOPALD, S. M. EMELYANOV and R. F. TARASENKO, Sov. Phys.—Solid State 27 (1985) 1517.

    Google Scholar 

  70. G. LUCOVSKY, R. M. WHITE, J. A. BENDA and J. F. REVELLI, Phys. Rev. B 7 (1973) 3859.

    Google Scholar 

  71. V. V. SOBOLEV and V. I. DONESTKICH, Phys. Stat. Sol. (b) 45 (1971) K15.

    Google Scholar 

  72. R. ZALLEN and M. L. SLADE, Phys. Rev. B 9 (1974) 1627.

    Google Scholar 

  73. R. ZALLEN, ibid. Rev. 9 (1974) 4485.

    Google Scholar 

  74. K. KUMAZAKI and K. IMAI, Phys. Stat. Sol. (b) 149 (1988) K183.

    Google Scholar 

  75. A. SEGURA, F. POMER, A. CANTARERO, W. KRAUSE and A. CHEVY, Phys. Rev. B 29 (1984) 5708.

    Google Scholar 

  76. R. FIVAZ and E. MOOSER, Phys. Rev. A 136 (1964) 833.

    Google Scholar 

  77. A. SEGURA, J. P. GUESDON, J. M. BESSON and A. CHEVY, J. Appl. Phys. 54 (1983) 876.

    Google Scholar 

  78. S. H. WEMPLE, A. JAYARAMAN and M. DIDOMENICO Jr, Phys. Rev. Lett. 17 (1966) 142.

    Google Scholar 

  79. S. H. WEMPLE, M. DIDOMENICO Jr and A. JAYARAMAN, Phys. Rev. 180 (1969) 547.

    Google Scholar 

  80. K. L. I. KOBAYASHI, Y. KATO, Y. KATAYAMA and K. F. KOMATSUBARA, Solid State Commun. 17 (1975) 875.

    Google Scholar 

  81. K. MIZUSHIMA, M. TANAKA, A. ASAI, S. IDA and J. B. GOODENOUGH, J. Phys. Chem. Solids 14 (1979) 1129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hari, N.S., Kutty, T.R.N. Effect of secondary-phase segregation on the positive temperature coefficient in resistance characteristics of n-BaTiO3 ceramics. Journal of Materials Science 33, 3275–3284 (1998). https://doi.org/10.1023/A:1013220926869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013220926869

Keywords

Navigation