Skip to main content
Log in

How and why CVD diamond is formed: a solution of the thermodynamic paradox

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diamond chemical vapour deposition (CVD) thought of as a crystal growth process, is a thermodynamic paradox because it violates fundamental principles of thermodynamics. The most astonishing violation is the experimental observation that CVD diamond can form in gaseous environments that are carbon under-saturated with respect to diamond. A new concept of CVD diamond formation that describes the process in terms of thermodynamics, without any violation of the latter, is presented. According to the present concept the diamond formation is a chemical process consisting in accretion of polymantane macromolecules. The process proceeds on surfaces of polymantane seed macromolecules which are identical to diamond crystals which have H-terminated surfaces. Chemical thermodynamics insist that the Gibb's energy of reaction describing the process, ΔG, has a large negative value for the process to be able to proceed. However, under certain conditions, the diamond CVD may not proceed even if ΔG ≪ 0, because the process may be kinetically hindered. Such a situation occurs at “low” temperatures at which the abstraction of hydrogen atoms from H-terminated diamond seed crystal surfaces by free hydrogen atom impact followed by the addition of new carbon atoms to the diamond lattice, is a rate-limiting step. The kinetic parameter determining the rate of this step is correlated with thermodynamic instability, TI, of H-terminated diamond seed crystal surfaces. Using ΔG and TI functions, one can derive correlations between the film-phase composition as well as the growth-rate and process variables. The dependencies predicted by the present model are in excellent agreement with reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. PIEKARCZYK, R. MESSIER, R. ROY and C. ENGDAHL, J. Crystal Growth 106 (1990) 2796.

    Google Scholar 

  2. R. ROY, H. S. DEWAN and P. RAVINDRANATHAN, Mater. Res. Bull 28 (1993) 861.

    Google Scholar 

  3. Idem, J. Mater. Chem 3 (1993) 685.

    Google Scholar 

  4. Idem, Proc. Electrochem. Soc. 93(17) (1993) 160.

    Google Scholar 

  5. M. A. KELLY, S. KAPOOR, D.S. OLSON and S. B. HAGSTROM, Mater. Res. Soc. Symp. Proc. 242 (1992) 51.

    Google Scholar 

  6. A. R. BADZIAN, T. BADZIAN, R. ROY, R. MESSIER and K. E. SPEAR, Mater. Res. Bull. 23 (1988) 531.

    Google Scholar 

  7. M. C. SALVADORI, M. A. BREWER, J. W. AGER III, K. M. KRISHNAN and I. G. BROWN, J. Electrochem. Soc. 139 (1992) 558.

    Google Scholar 

  8. N. M. HWANG and D. Y. YOON, “Applications of Diamond Films and Related Materials”, 3rd International Conference 1995, edited by A. Feldman, Y. Tzeng, W. A. Yarbrough, M. Yoshikawa and M. Murakawa NIST Special Publication 885, (1995) (Gaithersburg, MD, NIST 1995) pp. 661–4.

    Google Scholar 

  9. Y. SATO, “New Diamond 1990” (Japan New Diamond Forum, Tokyo, 1990) pp. 4–9.

    Google Scholar 

  10. W. PIEKARCZYK, J. Crystal Growth 119 (1992) 345.

    Google Scholar 

  11. W. PIEKARCZYK and S. PRAWER, Diamond Relat. Mater. 2 (1993) 41.

    Google Scholar 

  12. Idem J. Crystal Growth 135 (1994) 172.

    Google Scholar 

  13. J. A. MUCHA, D. L. FLAMM and D. E. IBBOTSON, J. Appl. Phys. 65 (1989) 3448.

    Google Scholar 

  14. J. WEI and Y. TZENG, J. Crystal Growth 128 (1993) 413.

    Google Scholar 

  15. D. S. OLSON, M. A. KELLY, S. KAPOOR and S. B. HAGSTROM, Mater. Res. Soc. Symp. Proc. 242 (1992) 43.

    Google Scholar 

  16. M. A. KELLY, D. S. OLSON S. KAPOOR and S. B. HAGSTROM, Appl. Phys. Lett. 60 (1992) 2502.

    Google Scholar 

  17. D. S. OLSON, M. A. KELLY, S. KAPOOR, and S. B. HAGSTROM, J. Mater. Res. 9 (1994) 1546.

    Google Scholar 

  18. H. MAEDA, S. MASUDA, K. KUSAKABE and S. MOROOKA, J. Crystal Growth, 121 (1992) 507.

    Google Scholar 

  19. C. P. CHANG, D. L. FLAMM, and D. E. IBBOTSON, J. A. MUCHA J. Appl. Phys. 63 (1988) 1744.

    Google Scholar 

  20. S. IIJIMA, Y. AIKAWA and K. BABA, Appl. Phys. Lett. 57 (1990) 2646.

    Google Scholar 

  21. M. Kh. KARAPET'YANC, “Chemical Thermodynamics” (Khimiya, Moscow 1975) p. 388 (in Russian).

    Google Scholar 

  22. W. ZHU, C. A. RANDALL, A. R. BADZIAN and R. MESSIER, J. Vac. Sci. Technol A7 (1089) 2315.

    Google Scholar 

  23. W. PIEKARCZYK, Diamond Relat. Mater 7 (1998) 47.

    Google Scholar 

  24. J-T WANG and J-O CARLSSON, Surf. Coat. Technol 43/44 (1991) 1.

    Google Scholar 

  25. J.-T. WANG, P.-J. ZHENG, CH-B CAO and G.-Y. LI, Proc. Electrochem. Soc. 93(17) (1993) 962.

    Google Scholar 

  26. P. VAN RYSSELBERGHE, J. Phys. Chem 41 (1937) 787.

    Google Scholar 

  27. W. L. HSU, Appl. Phys. Lett. 59 (1991) 1427.

    Google Scholar 

  28. Idem, J. Appl. Phys. 72 (1992) 3102.

    Google Scholar 

  29. S. J. HARRIS, D. N. BELTON and R. J. BLINT, in “New Diamond Science and Technology”, 1991 MRS International Conference Proceedings edited by R. Messier, J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991) pp. 277–89.

    Google Scholar 

  30. S. J. HARRIS, D. N. BELTON and R. J. BLINT, J. Appl. Phys 70 (1991) 2654.

    Google Scholar 

  31. E. KONDOH, T. OHTA, T. MITOMO and K. OHTSUKA, ibid 72 (1992) 705.

    Google Scholar 

  32. E. KONDOH, T. OHTA, T. MITOMO and K. OHTSUKA, Diamond Relat. Mater 3 (1994) 270.

    Google Scholar 

  33. S. J. HARRIS and A. M. WEINER, Proc. Electrochem. Soc. 93(17) (1993) 242.

    Google Scholar 

  34. M. KAMO, “New Diamond 1988” (New Diamond Forum, Tokyo, 1988) pp. 24–29.

    Google Scholar 

  35. D.-W. KWEON, J.-Y. LEE and D. KIM, J. Appl. Phys. 69 (1991) 8329.

    Google Scholar 

  36. W. ZHU, R. MESSIER and A. R. BADZIAN, Proc. Electrochem. Soc. 89(12) (1989) 61.

    Google Scholar 

  37. K. BANDO, K. KAMO, T. ANDO and Y. SATO, in “New Diamond Science and Technology”, 1991 MRS International Conference Proceedings edited by R. Messier, J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991) pp. 467–72.

    Google Scholar 

  38. L. SCHÄFER, C.-P. KLAGES, U. MEIER and KOHSEHÖINGHAUS, Appl. Phys. Lett. 58 (1991) 571.

    Google Scholar 

  39. J. C. BAILAR Jr, H. J. EMELÉUS, R. NYHOLM and A. F. TROTMAN-DICKENSON (eds) “Comprehensive Inorganic Chemistry” (Pergamon, Oxford, 1973).

    Google Scholar 

  40. S. J. HARRIS and A. M. WEINER, J. Appl. Phys. 75 (1994) 5026.

    Google Scholar 

  41. S. MATSUMOTO, and N. SETAKA, Carbon 17 (1979) 485.

    Google Scholar 

  42. S. V. PEPPER, J. Vac. Sci. Technol. 20 (1982) 213.

    Google Scholar 

  43. J. F. MORAR, F. J. HIMPSEL, G. HOLLINGER, J. L. JORDAN, G. HUGHES and F. R. McFEELY, Phys. Rev. B 33 (1986) 1340.

    Google Scholar 

  44. T. R. ANTHONY, Vacuum 41 (1990) 1356.

    Google Scholar 

  45. S. W. BENSON, “Thermochemical Kinetics Methods for the Estimation of Thermochemical Data and Rate Parameters”, 2nd Edn (Wiley, New York, 1976).

    Google Scholar 

  46. A. OHL, J. RÖPKE, and W. SCHLEINITZ, Diamond Relat. Mater 2 (1993) 298.

    Google Scholar 

  47. A. R. BADZIAN, T. BADZIAN, X. H. WANG and T. M. HARTNETT in “New Diamond Science and Technology”, 1991 MRS International Conference Proceedings, edited by R. Messier, J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991) pp. 549–56.

    Google Scholar 

  48. H. LI, M. MECRAY, W. YARBROUGH and X. H. WANG, J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991) ibid pp. 461–6.

    Google Scholar 

  49. S. MATSUMOTO, Y. SATO, M. TSUTSUMI and N. SETAKA, J. Mater Sci. 17 (1982) 3106.

    Google Scholar 

  50. H. R. THORSHEIM, F. G. CELII, J. E. BUTLER, L. S. PLANO and J. M. PINNEO, in “New Diamond Science and Technology”, 1991 MRS International Conference Proceedings edited by R. Messier, J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991) pp. 207–12.

    Google Scholar 

  51. L. S. PLANO, D. A. STEVENSON and J. R. CARRUTHERS, J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991) ibid, pp. 257–62.

    Google Scholar 

  52. T. KOMATSU, H. YAMASHITA, Y. TAMON and N. KIKUCHI, in “Proceedings of the 8th International Symposium on Plasma Chemistry (ISPC-8)”, Tokyo, 1987, edited by K. Akashi and A. Kinbara (Tokyo, 1987) pp. 2487–92.

  53. E. KONDOH, T. OHTA, T. MITOMO and K. OHTSUKA, Appl. Phys. Lett 59 (1991) 488.

    Google Scholar 

  54. B. V. SPITSYN and L. L. BOUILOV, in “Diamond and Diamond-Like Materials Synthesis” edited by G. H. Johnson, A. R. Badzian and M. W. Geis (Materials Research Society, Pittsburgh, PA, 1988) pp. 3–14.

    Google Scholar 

  55. K.-I. SASAKI, K. KURIHARA and M. KAWARADA, in “New Diamond Science and Technology”, 1991 MRS International Conference Proceedings, edited by J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991) pp. 485–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piekarczyk, W. How and why CVD diamond is formed: a solution of the thermodynamic paradox. Journal of Materials Science 33, 3443–3453 (1998). https://doi.org/10.1023/A:1013214220026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013214220026

Keywords

Navigation