Skip to main content
Log in

Sorption mechanism of U(VI) on a reference montmorillonite: Binding to the internal and external surfaces

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Batch type experiments of U(VI) sorption on a reference montmorillonite(SWy-2) were carried out over wide ranges of pH, ionic strength, and totalU(VI) concentration. The influences of these factors on the sorption behaviorof U(VI) were analyzed to gain a macroscopic understanding of the sorptionmechanism. The sorption of U(VI) on montmorillonite showed a distinct dependencyon ionic strength. When it was low (0.01 or 0.001M), almost all of the totalU(VI) was sorbed over the whole pH range studied, therefore, the dependencyon pH was not clear. But the sorption of U(VI) on montmorillonite showed asorption pH edge in the high ionic strength condition (0.1M), like those onother clay minerals, kaolinite and chlorite. A mechanistic model was establishedby considering the mineral structure of montmorillonite together with ourprevious EPR result, which successfully explained the U(VI) sorption on montmorilloniteover the whole range of experimental conditions. The model describes the U(VI)sorption on montmorillonite as simultaneous and competitive reactions of ionexchange and surface complexation, whose relative contribution to the totalsorption depends on pH and ionic strength. At low ionic strength and low pHconditions, ion exchange was the dominant mechanism for U(VI) sorption onmontmorillonite. At high ionic strength and high pH conditions, surface complexationwas the dominant

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Payne,J. A. Davis,T. D. Waite, Radiochim. Acta, 66/67 (1994) 297.

    Google Scholar 

  2. A. E. Ringwood, Miner. Magazine, 49 (1985) 159.

    Google Scholar 

  3. G. D. Turner,J. M. Zachara,J. P. McKinley,S. C. Smith, Geochim. Cosmochim. Acta, 60 (1996) 3399.

    Google Scholar 

  4. D. C. Hsi,D. Lagmuir, Geochim. Cosmochim. Acta, 49 (1985) 1931.

    Google Scholar 

  5. T. D. Waite,J. A. Davis,T. E. Payne,G. A. Waychunas,N. Xu, Geochim. Cosmochim. Acta, 58 (1994) 5465.

    Google Scholar 

  6. OECD/NEA, Radionuclide Sorption from the Safety Evaluation Perspective, Proc. of NEA Workshop, Interlaken, Switzerland, 1991.

  7. Y.-H. Cho,C.-K. Park,P.-S. Hahn, J. Korean Nuclear Soc., 29 (1997) 393.

    Google Scholar 

  8. I. Casas,D. Casabona,L. Duro,J. de Pablo, Chem. Geol., 113 (1994) 319.

    Google Scholar 

  9. G. M. Milton,R. M. Brown, Canad. J. Earth Sci., 24 (1987) 1321.

    Google Scholar 

  10. K. V. Ticknor, Radiochim. Acta, 64 (1994) 229.

    Google Scholar 

  11. J. Jung,S. P. Hyun,J. K. Lee,Y. H. Cho,P. S. Hahn, J. Radioanal. Nucl. Chem., 242 (1999) 405.

    Google Scholar 

  12. R. E. Grim,G. Kulbicki, Am. Miner., 46 (1961) 1329.

    Google Scholar 

  13. R. E. Grim,N. Guven, Bentonites, Geology, Mineralogy, Properties, and Uses, Elsevier, Amsterdam, 1978.

    Google Scholar 

  14. J. L. Post,C. C. Plummer, Clays Clay Miner., 20 (1972) 271.

    Google Scholar 

  15. H. van Olphen,J. J. Fripiat, Data Handbook for Clay Minerals and Other Non-metallic Materials, Pergamon, New York, 1979.

    Google Scholar 

  16. R. J. Pruett,H. L. Webb, Clays Clay Miner., 41 (1993) 514.

    Google Scholar 

  17. I. Grenthe,J. Fuger,R. J. M. Koninigs,R. J. Lemire,A. B. Muller,C. Nguyen-Trung Cregu,H. Wanner, Chemical Thermodynamics of Uranium, OECD/NEA, Elsevier, Amsterdam, 1992.

    Google Scholar 

  18. M. R. Chandratillake,G. W. A. Newton,V. J. Robinson, CHEMVAL Project-Comparison of Thermodynamic Data Bases Used in Geochemical Modeling, EUR-1 1891, Commission of European Communities, Luxembourg, 1988.

    Google Scholar 

  19. T. E. Payne,J. A. Davis,T. D. Waite, Radiochim. Acta, 74 (1996) 239.

    Google Scholar 

  20. R. E. Grim, Clay Mineralogy, MgGraw-Hill, New York, 1968.

    Google Scholar 

  21. B. Schroth,G. Sposito, Clays Clay Miner., 45 (1996) 85.

    Google Scholar 

  22. S. Yariv,H. Cross, Geochemistry of Colloid Systems, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  23. S. P. hyun,Y. H. Cho,S. J. Kim,P. S. Hahn, J. Colloid Interface Sci., 222 (2000) 254.

    Google Scholar 

  24. W. Stumm, Chemistry of the Solid-Water Interface, John Wiley & Sons, New York, 1992.

    Google Scholar 

  25. B. Baeyens,M. H. Bradbury, J. Contam. Hydrol., 27 (1997) 199.

    Google Scholar 

  26. M. H. Bradbury,B. Baeyens, J. Contam. Hydrol., 27 (1997) 223.

    Google Scholar 

  27. J. P. McKinley,J. M. Zachara,S. C. Smith,G. D. TURNER, Clays Clay Miner., 43 (1995) 586.

  28. A. J. Dent,J. D. F. Ramsay,S. W. Swanton, J. Colloid Interface Sci., 150 (1992) 45.

    Google Scholar 

  29. D. E. Morris,C. J. Chisholm-Brause,M. E. Barr,S. D. Conradson,P. G. Eller, Geochim. Cosmochim. Acta, 58 (1994) 3613.

    Google Scholar 

  30. C. Chisholm-Brause,S. D. Conradson,C. T. Buscher,P. G. Eller,D. E. Morris, Geochim. Cosmochim. Acta, 58 (1994) 3625.

    Google Scholar 

  31. J. M. Zachara,S. C. Smith, Soil Sci. Soc. Am. J., 58 (1994) 762.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.J. Sorption mechanism of U(VI) on a reference montmorillonite: Binding to the internal and external surfaces. Journal of Radioanalytical and Nuclear Chemistry 250, 55–62 (2001). https://doi.org/10.1023/A:1013212130177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013212130177

Keywords

Navigation