Skip to main content
Log in

Kinetic Modeling of Energy Metabolism and Superoxide Generation in Hepatocyte Mitochondria

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Direct nonenzymatic oxidation of semiquinone by oxygen is one of the main sources of superoxide radicals \(\left( {{O}_{2}^{\overline \cdot } } \right)\) in mitochondria. Using all the known data on hepatocyte mitochondria, we have revealed the correlation between the rate of superoxide generation by the bc 1complex and the transmembrane potential (ΔΨ). Assuming that the main electrogenic stage of the Qcycle is the electron transfer between the cytochrome bhemes, then the rate of superoxide generation sharply increases when ΔΨ grows from 150 to 180 mV. However, this interrelation is ambiguous. Indeed, the increase of the generation rate with the growth of the potential can occur faster when succinate dehydrogenase is inhibited by malonate than when external ADP is exhausted. When the potential is changed by adding phosphate or potassium (K+), the rate of \(\left( {{O}_{2}^{\overline \cdot } } \right)\) production remains constant, although the comparison of the rates at the same ΔΨ reveals the effect of phosphate or potassium. It turned out that the rate of \(\left( {{O}_{2}^{\overline \cdot } } \right)\) generation is a function of \(\Delta \overline {\mu } _{H}\) rather than any of its components. Phosphate and K+have practically no influence on \(\Delta \overline {\mu } _{H}\), since the change in ΔΨ is compensated by ΔpH. The rate of superoxide generation by the bc 1complex is a multiple function of the electron-transfer activity of enzymes, the processes determining the membrane potential (e.g., loading), and the oxygen concentration. The kinetic model proposed in this work may serve to understand how the superoxide production is regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skulachev, V.P., Membrane Bioenergetics, Berlin: Springer, 1988.

    Google Scholar 

  2. Skulachev, V.P., Quart. Rev. Biophys., 1997, vol. 29, pp. 169–202.

    Google Scholar 

  3. Korshunov, S.S., Skulachev, V.P., and Starkov, A.A., FEBS Lett., 1997, vol. 416, pp. 15–18.

    PubMed  Google Scholar 

  4. Boveris, A. and Chance, B., Biochem. J., 1973, vol. 134, pp. 707–716.

    PubMed  Google Scholar 

  5. Hansford, R.G., Hogue, B.A., and Mildaziene, V., J. Bioenerg. Biomembr., 1997, vol. 29, pp. 89–95.

    PubMed  Google Scholar 

  6. Korshunov, S.S., Korkina, O.V., Ruuge, E.K., Skulachev, V.P., and Starkov, A.A., FEBS Lett., 1998, vol. 435, pp. 215–218.

    PubMed  Google Scholar 

  7. Bohnensack, R., J. Bioenerg. Biomemb., 1982, vol. 14, pp. 45–61.

    Google Scholar 

  8. Korzeniewski, B. and Froncisz, W., Biochim. Biophys. Acta., 1991, vol. 1060, pp. 210–223.

    PubMed  Google Scholar 

  9. Korzeniewski, B., Biophys. Chemistry, 1996, vol. 57, pp. 143–153.

    Google Scholar 

  10. Korzeniewski, B., Mol. Cell. Biochem., 1998, vol. 184, pp. 345–358.

    PubMed  Google Scholar 

  11. Van Dam, K., Westerhoff, H.V., Krab, K., Van der Meer, R., and Arents, J.C., Biochim. Biophys. Acta, 1980, vol. 591, pp. 240–250.

    PubMed  Google Scholar 

  12. Demin, O.V., Kholodenko, B.N., and Skulachev, V.P., Mol. Cell. Biochem., 1998, vol. 184, pp. 21–33.

    PubMed  Google Scholar 

  13. Drachev, L.A., Kaurov, B.S., Mamedov, M.D., Mulkidjanian, A.Y., Semenov, A.Y., Shinkarev, V.P., Skulachev, V.P., and Verkhovsky, M.I., Biochim. Biophys. Acta, 1989, vol. 973, pp. 189–197.

    Google Scholar 

  14. Semenov, A.Y., FEBS Lett., 1993, vol. 321, pp. 1–5.

    PubMed  Google Scholar 

  15. Harris, E.J. and Bangham, J.A., J. Memb. Biol., 1972, vol. 9, pp. 141–154.

    Google Scholar 

  16. Alberty, R.A., J. Biol. Chem., 1969, vol. 244, pp. 3290–3302.

    PubMed  Google Scholar 

  17. Lawson, J.W.R. and Veech, R.L., J. Biol. Chem., 1979, vol. 254, pp. 6528–6537.

    PubMed  Google Scholar 

  18. Reich, J.G. and Rohde, K., Biomed. Bioch. Acta, 1983, vol. 42, pp. 37–46.

    Google Scholar 

  19. Demin, O.V., Vesterkhoff, Kh. V., and Kholodenko, B.N., Biokhimiya, 1998, vol. 63, pp. 37–53.

    Google Scholar 

  20. Boork, J. and Wennestrom, H., Biochim. Biophys. Acta, 1984, vol. 767, pp. 314–320.

    PubMed  Google Scholar 

  21. Reynolds, I.A., Johnson, E.A., and Tanford, C., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 6869–6873.

    PubMed  Google Scholar 

  22. Liu, S.-s. and Huang, J.P., Molecular Mechanisms and Health Effects, Proc. Int. Symp. on Natural Antioxidants, Moores, D., Ed., Champaign: AOCS Press IL, 1996, pp. 513–529.

    Google Scholar 

  23. Liu, S.-s., Biosci. Reports., 1997, vol. 17, pp. 259–272.

    Google Scholar 

  24. Kunz, W., Bohnensack, R., Bohme, G., Kuster, U., Letko, G., and Schonfeld, P., Arch. Biochem. Biophys., 1981, vol. 209, pp. 219–229.

    PubMed  Google Scholar 

  25. Letko, G., Kuster, U., Duszynski, J., and Kunz, W., Biochim. Biophys. Acta, 1980, vol. 593, pp. 196–203.

    PubMed  Google Scholar 

  26. Kingsley, P.B. and Feigenson, G.W., Biochim. Biophys. Acta, 1981, vol. 635, pp. 602–618.

    PubMed  Google Scholar 

  27. Trumpower, B.L., Biochim. Biophys. Acta, 1981, vol. 639, pp. 129–155.

    PubMed  Google Scholar 

  28. Bowyer, J.R. and Trumpower, B.L., J. Biol. Chem., 1981, vol. 256, pp. 2245–2251.

    PubMed  Google Scholar 

  29. Rich, P.R., Biochim. Biophys. Acta, 1984, vol. 768, pp. 53–79.

    PubMed  Google Scholar 

  30. Wrigglesworth, J.M., Elsden, J., Chapman, A., der Water, N.V., and Grahn, M.F., Biochim. Biophys. Acta, 1988, vol. 936, pp. 452–464.

    PubMed  Google Scholar 

  31. Jones, D., Am. J. Physiol., 1986, vol. 250, pp. C663–C675.

  32. Green, D.E. and Wharton, D.C., Biochem. Z., 1963, vol. 336, pp. 335–346.

    Google Scholar 

  33. Srere, P.A., Trends Biol. Sci., 1981, vol. 6, pp. 4–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demin, O.V., Goryanin, I.I., Kholodenko, B.N. et al. Kinetic Modeling of Energy Metabolism and Superoxide Generation in Hepatocyte Mitochondria. Molecular Biology 35, 940–949 (2001). https://doi.org/10.1023/A:1013211007465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013211007465

Navigation