Skip to main content
Log in

Nucleotides Induced Changes in Skeletal Muscle Myosin by DSC, TMDSC and EPR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR, ST-EPR) and differential scanning calorimetry(DSC) were used in conventional and temperature modulated mode to study internal motions and energetics of myosin in skeletal muscle fibres in different states of the actomyosin ATPase cycle. Psoas muscle fibres from rabbit were spin-labelled with an isothiocyanate-based probe molecule at the reactive sulfhydryl site (Cys-707) of the catalytic domain of myosin. In the presence of nucleotides (ATP, ADP, AMP⋅PNP) and ATP or ADP plus orthovanadate, the conventional EPR spectra showed changes in the ordering of the probe molecules in fibres. In MgADP state a new distribution appeared; ATP plus orthovanadate increased the orientational disorder of myosin heads, a random population of spin labels was superimposed on the ADP-like spectrum.

In the complex DSC pattern, higher transition referred to the head region of myosin. The enthalpy of the thermal unfolding depended on the nucleotides, the conversion from a strongly attached state of myosin to actin to a weakly binding state was accompanied with an increase of the transition temperature which was due to the change of the affinity of nucleotide binding to myosin. This was more pronounced in TMDSC mode, indicating that the strong-binding state and rigor state differ energetically from each other. The different transition temperatures indicated alterations in the internal microstructure of myosin head region The monoton decreasing TMDSC heat capacities show that C p of biological samples should not be temperature independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Lymn and E. W. Taylor, Biochemistry, 10 (1971) 4617.

    Article  CAS  Google Scholar 

  2. H. E. Huxley, Cross-Bridge Mechanism in Muscle Contraction (H. Sugi and G. H. Pollack, Eds) University of Tokyo Press, Tokyo 1979, p. 391.

    Google Scholar 

  3. I. Rayment, H. M. Holden, M. Whittaker, C. B. Yohn, M. Lorenz, K. C. Holmes and R. A. Milligan, Science, 261 (1993) 58.

    CAS  Google Scholar 

  4. A. Orlova and E. H. Egelman, J. Mol. Biol., 232 (1993) 334.

    Article  CAS  Google Scholar 

  5. A. Orlova and E. H. Egelman, J. Mol. Biol., 245 (1995) 582.

    Article  CAS  Google Scholar 

  6. B. Brenner and E. Eisenberg, Cardiac Energetics Basic Mechanisms and Clinical Applications, In: R. Jacob, Hj. Just., Ch. Holubarsch, (Eds), Supplement to Basic Research in Cardiology Springer-Verlag, New York 1987, 82.2 p. 3.

    Google Scholar 

  7. C. C. Goodno, Proc. Natl. Acad. Sci. USA, 76 (1979) 2620.

    Article  CAS  Google Scholar 

  8. C. A. Smith and I. Rayment, Biochemistry, 35 (1996) 5404.

    Article  CAS  Google Scholar 

  9. J. P. Trayer, H. R. Trayer and B. A. Levine, Eur. J. Biochem., 164 (1987) 259.

    Article  CAS  Google Scholar 

  10. K. Franks-Skiba and R. Cook, Biophys. J., 68 (1995) 142S.

    CAS  Google Scholar 

  11. A. J. Fisher, C. A. Smith, J. Thoden, R. Smith, K. Sutoh, H. M. Holden and I. Rayment, Biophys. J., 68 (1995) 19S.

    CAS  Google Scholar 

  12. P. G. Fajer, E. A. Fajer, J. J. Matta and D. D. Thomas, Biochemistry, 29 (1990) 5865.

    Article  CAS  Google Scholar 

  13. P. G. Fajer and D. Marsh, J. Mag. Res., 49 (1982) 212.

    CAS  Google Scholar 

  14. D. Lörinczy, U. Hoffmann, L. Pótó, J. Belagyi and P. Laggner, Gen. Physiol. Biophys., 9 (1990) 589.

    Google Scholar 

  15. D. Raucher, C. P. Sár, K. Hideg and P. G. Fajer, Biochemistry, 33 (1994) 14317.

    Article  CAS  Google Scholar 

  16. P. W. Chun, Biophys. J., 78 (2000) 416.

    Article  CAS  Google Scholar 

  17. P. W. Chun, Int. J. Quant. Chem., 75 (1999) 1027.

    Article  CAS  Google Scholar 

  18. Y. E. Goldman, Ann. Rev. Physiol., 49 (1987) 637.

    Article  CAS  Google Scholar 

  19. D. D. Thomas, S. Ramachandran, O. Roopnarine, D. W. Hayden and M. Ostap, Biophys. J., 68 (1995) 135S.

    CAS  Google Scholar 

  20. I. Matsubara and N. Yagi, J. Physiol., 278 (1978) 297.

    CAS  Google Scholar 

  21. E. A. Fajer, E. M. Ostap, D. D. Thomas, R. Cooke, N. Naber and P. G. Fajer, Biophys. J., 68 (1995) 322S.

    CAS  Google Scholar 

  22. N. Yagi, K. Horiuti and S. Takemori, J. Muscle Res. Cell Motil., 19 (1998) 75.

    CAS  Google Scholar 

  23. K. Samejima, M. Ishioroshi and T. Yasui, Agric. Biol. Chem., 47 (1983) 2373.

    CAS  Google Scholar 

  24. D. I. Levitsky, V. L. Shnyrov, N. V. Khvorov, A. E. Bukatina, N. S. Vedenkina, E. A. Permyakov, O. P. Nikolaeva and B. F. Poglazov, Eur. J. Biochem., 209 (1992) 829.

    Article  CAS  Google Scholar 

  25. A. Setton and A. Muhlrad, Arch. Biochem. Biophys., 235 (1984) 411.

    Article  CAS  Google Scholar 

  26. S. A. Potekhin and P. L. Privalov, Biofizika, 23 (1978) 219.

    CAS  Google Scholar 

  27. A. Bertazzon and T. Y. Tsong, Biochemistry, 29 (1990) 6453.

    Article  CAS  Google Scholar 

  28. M. Zolkiewski, M. J. Redowicz, E. D. Korn and A. Ginsburg, Arch. Biochem. Biophys., 318 (1995) 207.

    Article  CAS  Google Scholar 

  29. D. Lörinczy, B. Gaszner and J. Belagyi, High Temp.-High Press., 30 (1998) 119.

    Article  Google Scholar 

  30. J. W. Shriver and U. Kamath, Biochemistry, 29 (1990) 2556.

    Article  CAS  Google Scholar 

  31. J. Belagyi and D. Lörinczy, Biochem. Biophys. Res. Comm., 219 (1996) 936.

    Article  CAS  Google Scholar 

  32. S. Highsmith and D. Eden, Biochemistry, 29 (1990) 4087.

    Article  CAS  Google Scholar 

  33. J. W. Shriver and B. D. Sykes, Biochemistry, 20 (1981) 2004.

    Article  CAS  Google Scholar 

  34. J. Belagyi, I. Frey and L. Pótó, Eur. J. Biochem., 224 (1994) 215.

    Article  CAS  Google Scholar 

  35. K. Ajtai, D. J. Toft and T. P. Burghardt, Biochemistry, 33 (1994) 5382.

    Article  CAS  Google Scholar 

  36. R. E. Dalbey, J. Weiel and R. G. Yount, Biochemistry, 22 (1983) 4696.

    Article  CAS  Google Scholar 

  37. E. E. Huston, J. C. Grammer and R. G. Yount, Biochemistry, 27 (1988) 8945.

    Article  CAS  Google Scholar 

  38. A. Bertazzon, G. H. Tian and T. Y. Tsong, Biophys. J., 53 (1988) 236a.

    Google Scholar 

  39. L. King and S. S. Lehrer, Biochemistry, 28 (1989) 3498.

    Article  CAS  Google Scholar 

  40. D. Lörinczy and J. Belagyi, Biochem. Biophys. Res. Comm., 217 (1995) 592.

    Article  Google Scholar 

  41. R. Aguirre, S. H. Lin, F. Gonsoulin, C. K. Wang and H. C. Cheung, Biochemistry, 28 (1989) 799.

    Article  CAS  Google Scholar 

  42. K. Wakabayashi, M. Tokunaga, I. Kohno, Y. Sugimoto, T. Hamanaka, Y. Takezawa, T. Wakabayashi and Y. Ameniya, Science, 258 (1992) 443.

    CAS  Google Scholar 

  43. A. A. Bobkov and D. I. Levitsky, Biochemistry, 34 (1995) 9708.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lőrinczy, D., Könczöl, F., Farkas, L. et al. Nucleotides Induced Changes in Skeletal Muscle Myosin by DSC, TMDSC and EPR. Journal of Thermal Analysis and Calorimetry 66, 633–644 (2001). https://doi.org/10.1023/A:1013197824826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013197824826

Navigation