Advertisement

Plasmas and Polymers

, Volume 6, Issue 3, pp 175–188 | Cite as

Plasma Sterilization: A Review of Parameters, Mechanisms, and Limitations

  • S. Lerouge
  • M. R. Wertheimer
  • L'H. Yahia
Article

Abstract

Low-temperature plasma is a promising method for destroying microorganisms, an alternative to “conventional” methods which have numerous drawbacks. Several plasma-based sterilization technologies are presently under development, but their mechanisms of action are still incompletely understood. Since more than five years, we have investigated the effects of plasma on microorganisms (killing efficacy, and related mechanisms), as well as on the materials being sterilized. This article reports some important observations made during this work, using the commercialized so-called “plasma sterilizers” and “real” low-pressure plasma systems. The mechanism of etching (volatilization) of microorganisms by plasma that we have observed, leads us to believe that plasma may constitute a powerful solution to the clinical problems of deactivating also prions and endotoxins. However, plasma effectiveness is influenced by numerous experimental parameters, which we review here. This inherent complexity, and the weak penetrating power of plasma species, that severely limits plasma effectiveness in the presence of organic residues, packaging material, or complex geometries, are the main limitations of plasma sterilization.

sterilization mechanism low-pressure plasma review etching limits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Lerouge, Ph.D. thesis, Ecole Polytechnique, Montreal (May 2000).Google Scholar
  2. 2.
    S. Lerouge, M. Tabrizian, M. R. Wertheimer, R. Marchand, and L'H. Yahia, Biomed. Maters. Eng. Int. J. (2001).Google Scholar
  3. 3.
    S. Lerouge, C. Guignot, N. Yagoubi, M. Tabrizian, D. Ferrier, and L'H. Yahia, J. Biomed. Mater. Res. 52, 744 (2000).Google Scholar
  4. 4.
    S. Lerouge, M. R. Wertheimer, R. Marchand, M. Tabrizian, and L'H. Yahia, J. Biomed. Mater. Res. 51, 128 (2000).Google Scholar
  5. 5.
    S. Lerouge, A. C. Fozza, M. R. Wertheimer, R. Marchand, and L'H. Yahia, Plasms. Polyms. 5, 31 (2000).Google Scholar
  6. 6.
    P. Jacobs and R. Kowatsch, Endoscopic Surg. Allied Technol. 1, 57 (1993).Google Scholar
  7. 7.
    R. A. Caputo, Int. J. Processing Sterile Supply, Official Publication of the ESH, No. 4, July/August (1994).Google Scholar
  8. 8.
    M. G. C. Baldry, J. Appl. Bacteriol. 54, 417 (1983).Google Scholar
  9. 9.
    M. C. Krebs, P. B´ ecasse, D. Verjat, and J. C. Darbord. Int. J. Pharmaceutics 160, 75 (1998).Google Scholar
  10. 10.
    R. S. Thomas, J. Cell. Biol. 23, 113 (1964).Google Scholar
  11. 11.
    D. Warth, Molecular structure of the bacterial spore, in Advances in Microbiology and Physiology, Vol. 17, D. W. Goulds, ed., (1978), p. 1.Google Scholar
  12. 12.
    K. Kelly-Wintenberg, T. C. Montie, C. Brickman, J. R. Roth, A. K. Carr, K. Sorge, L. C. Wadsworth, and P. P. Y. Tsai, J. Indust. Microbiol. Biotechnol. 20, 69 (1998).Google Scholar
  13. 13.
    M. Moisan, J. Barbeau, and J. Pelletier, Le Vide (Science, Technique Applications) 299, 15 (2001).Google Scholar
  14. 14.
    A. C. Fozza, J. E. Klemberg-Sapieha, and M. R. Wertheimer, Plasms. Polyms. 4, 183 (1999).Google Scholar
  15. 15.
    E. Kay, in Plasma Chemistry III, Topics in Current Chemistry, Vol. 94, Springer Verlag, Berlin (1980), p.6.Google Scholar
  16. 16.
    B. R. M. G. Boucher, Med. Device and Diagn. Ind. 7, 51 (1985).Google Scholar
  17. 17.
    F. D. Egitto, V. Vukanovic, and G. N. Taylor, Plasma etching of organic polymers, in Plasma Deposition, Treatments, and Etching of Polymers, d'Agostino R, ed., Academic Press, Boston, (1990), p. 321.Google Scholar
  18. 18.
    A. M. Wrobel, B. Lamontagne, and M.R. Wertheimer, Plasma Chem. Plasma Process. 8, 315 (1988).Google Scholar
  19. 19.
    S. R. Cain, F. D. Egitto, and F. Emmi, J. Vac. Sci. Technol. A 5, 1579 (1981).Google Scholar
  20. 20.
    S. Moreau, M. Moisan, M. Tabrizian, J. Barbeau, J. Pelletier, A. Ricard, and L'H. Yahia, J. Appl. Phys. 88, 1166 (2000).Google Scholar
  21. 21.
    S. M. Lin, Interaction of bacterial spores with radicals generated by microwave and low-temperature radio-frequency discharges, Ph.D. thesis, University of Texas at Arlington (1986).Google Scholar
  22. 22.
    S. Hury, D. R. Vidal, F. Desor, J. Pelletier, and T. Lagarde, Letters Appl. Microbiol. 26, 241 (1998).Google Scholar
  23. 23.
    T. T. Chau, K. C. Kao, G. Blank, and F. Madrid, Biomaterials 17, 1273 (1996).Google Scholar
  24. 24.
    A. V. Khomich, I. A. Soloshenko, V. V. Tsiolko, and I. L. Mikhno, Proc. 12th Int'l. Conf. Gas Discharges and Their Applications, Greifswald, 2, 740 (1997).188 Lerouge, Wertheimer, and Yahia Google Scholar
  25. 25.
    A. V. Khomich, I. A. Soloshenko, V. V. Tsiolko, and I. L. Mikhno, Proc. Int. Cont. Plasma Phys., Prague, 2745 (1998).Google Scholar
  26. 26.
    B. Lamontagne, O. M. K¨ uttel, and M. R. Wertheimer, Can. J. Phys. 69, 202 (1991).Google Scholar
  27. 27.
    M. R. Wertheimer and L. Martinu, in Microwave Discharges: Fundamentals and Applications, C. M. Ferreira and M. Moisan, eds., NATO ASI series 13: Physics, Plenum Press, New York, 302, 465 (1993).Google Scholar
  28. 28.
    A. C. Fozza, M. Moison, and M. R. Wertheimer, J. Appl. Phys. 88, 20 (2000).Google Scholar
  29. 29.
    A. Hallil, O. Zabeida, M. R. Wertheimer, and L. Martinu, J. Vac. Sci. Technol. A 18, 882 (2000).Google Scholar
  30. 30.
    M. Moisan and M. R. Wertheimer, Surf. Coat. Technol. 59, 1 (1993).Google Scholar
  31. 31.
    A. D. Russel, in Sterilization Technology: A Practical Guide for Manufacturers and Users of Health Care Products, R. F. Morissey and G. B. Phillips, eds., Van Nostrand Reinhold, New York, 3 (1993).Google Scholar
  32. 32.
    K. Kelly-Wintenberg, A. Hodge, and T. C. Montie, J. Vac. Sci. Technol. A 17, 1539 (1999).Google Scholar
  33. 33.
    C. Chang, S. F. Ossof, D. C. Lobe, M. H. Dorman, C. M. Dumais, R. G. Qualls, and J. D. Johnson, Appl. Environ. Microbiol. 49, 1361 (1985).Google Scholar
  34. 34.
    G. J. Tortora, B. R. Funke, and C. L. Case, Microbiology: An Introduction, Fifth Edition, The Benjamin Cummings Publishing Co., New York (1994).Google Scholar
  35. 35.
    M. J. Alfa, P. DeGagne, and N. Olson, Infect. Control Hosp. Epidemiol. 18, 641 (1997).Google Scholar
  36. 36.
    A. H. Dadd, K. E. McCormick, and G. M. Daley, J. Appl. Bacteriol. 55, 39 (1983).Google Scholar
  37. 37.
    H. Shintani, Biomed. Instrum. Technol.30, 449 (1996).Google Scholar
  38. 38.
    J. C. Darbord, Biomed. Pharmacother. 53, 34 (1999).Google Scholar
  39. 39.
    V. M. Steelman, A.O.R.N. J. 69, 946 (1999).Google Scholar
  40. 40.
    S. T. Cookson, J. J. Nora, J. A. Kithas, M. J. Arduino, W. W. Bond, P. H. Miller, J. Monahan, R.E. Hoffman, T. Curiel, D. Kaufman, B. M. Groves, and W. R. Jarvis, Catheter. Cardiovasc. Diagn. 42, 12 (1997).Google Scholar
  41. 41.
    N. Munakata, M. Saito, and K. Hieda, Photochem. Photobiol. 54, 761 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.Research Group on Biomechanics and Biomaterials, Biomedical Engineering InstituteÉcole PolytechniqueMontréalCanada
  2. 2.Department of Engineering PhysicsÉcole PolytechniqueMontréalCanada

Personalised recommendations