Skip to main content
Log in

Equation of State for Nonpolar Fluid Mixtures: Prediction from Boiling Point Constants

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Our previous corresponding-states correlation for the second virial coefficient of nonpolar fluids, based on the normal boiling point parameters, has been employed to predict the equation of state of nonpolar fluid mixtures. The analytical equation of state is that of Ihm, Song, and Mason, which requires three temperature-dependent parameters, i.e., the second virial coefficient, a scaling constant for softness of repulsive forces, and a van der Waals covolume. In the previous work, we showed that the temperature-dependent parameters could be calculated by knowing the boiling point constants. In this work, it is shown that using a simple geometric mean for the boiling point temperature and an arithmetic mean for the liquid density at the normal boiling point is sufficient to determine the temperature-dependent parameters for mixtures. The equation of state has been utilized to calculate the liquid density of several nonpolar fluid mixtures. The agreement with experiment is good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Barker and D. Henderson, J. Chem. Phys. 47:4714 (1967).

    Google Scholar 

  2. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54:5237 (1971).

    Google Scholar 

  3. Y. Song and E. A. Mason, J. Chem. Phys. 91:7840 (1989).

    Google Scholar 

  4. Y. Song and E. A. Mason, J. Chem. Phys. 93:686 (1990).

    Google Scholar 

  5. G. Ihm, Y. Song, and E. A. Mason, J. Chem. Phys. 94:3839 (1991).

    Google Scholar 

  6. Y. Song, J. Chem. Phys. 92:2683 (1990).

    Google Scholar 

  7. G. Ihm and E. A. Mason, Mol. Phys. 71:109 (1990).

    Google Scholar 

  8. G. Ihm, Y. Song, and E. A. Mason, Mol. Phys. 75:897 (1992).

    Google Scholar 

  9. F. M. Tao and E. A. Mason, Int. J. Thermophys. 13:1053 (1992).

    Google Scholar 

  10. H. Eslami, Int. J. Thermophys. 21:1123 (2000).

    Google Scholar 

  11. D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).

    Google Scholar 

  12. R. A. Aziz, J. Chem. Phys. 99:4518 (1993).

    Google Scholar 

  13. Y. Song and E. A. Mason, Fluid Phase Equil. 75:105 (1992).

    Google Scholar 

  14. K. S. Pitzer and R. F. Curl, Jr., J. Am. Chem. Soc. 79:2369 (1957).

    Google Scholar 

  15. M. Schreiber and K. S. Pitzer, Fluid Phase Equil. 46:113 (1989).

    Google Scholar 

  16. A. Boushehri and E. A. Mason, Int. J. Thermophys. 14:685 (1993).

    Google Scholar 

  17. M. H. Ghatee and A. Boushehri, Int. J. Thermophys. 17:945 (1996).

    Google Scholar 

  18. A. Boushehri and M. H. Keshavarz, Bull. Chem. Soc. Jpn. 67:1213 (1994).

    Google Scholar 

  19. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed. (Butterworths, London, 1982).

    Google Scholar 

  20. S. F. Barreiros, J. C. G. Calado, P. Clancy, M. N. da Ponte, and W. B. Streett, J. Phys. Chem. 86:1722 (1982).

    Google Scholar 

  21. J. C. G. Calado, H. J. R. Guedes, M. N. da Ponte, L. P. N. Rebelo, and W. B. Streett, J. Phys. Chem. 90:1892 (1986).

    Google Scholar 

  22. D. Vidal, P. Malbrunot, and J. Vermesse, Int. J. Thermophys. 12:943 (1991).

    Google Scholar 

  23. D. R. Douslin, R. H. Harrison, and R. T. Moore, J. Phys. Chem. 71: 3477 (1967).

    Google Scholar 

  24. A. Staby and J. M. Mollerup, J. Chem. Eng. Data 36:89 (1991).

    Google Scholar 

  25. T. M. Aminabhavi, V. B. Patil, M. I. Aralaguppi, and H. T. S. Phayde, J. Chem. Eng. Data 41:521 (1996).

    Google Scholar 

  26. A. A. Asfour and M. H. Siddique, J. Chem. Eng. Data 35:192 (1990).

    Google Scholar 

  27. G. H. Thomson, K. R. Brobst, and R. W. Hankinson, AIChE J. 28:671 (1982).

    Google Scholar 

  28. M. H. Mousazadeh and A. Boushehri, Int. J. Thermophys. 20:601 (1999).

    Google Scholar 

  29. G. A. Iglesias-Silva and K. R. Hall, Fluid Phase Equil. 131:97 (1997).

    Google Scholar 

  30. Kh. Nasrifar, Sh. Ayatollahi, and M. Moshfeghian, Fluid Phase Equil. 166:163 (1999).

    Google Scholar 

  31. M. J. Hiza, W. M. Haynes, and W. R. Parrish, J. Chem. Thermodyn. 9:873 (1977).

    Google Scholar 

  32. J. V. Widiatmo, T. Fujimine, H. Sato, and K. Watanabe, J. Chem. Eng. Data 42:270 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslami, H. Equation of State for Nonpolar Fluid Mixtures: Prediction from Boiling Point Constants. International Journal of Thermophysics 22, 1781–1793 (2001). https://doi.org/10.1023/A:1013195118132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013195118132

Navigation