Skip to main content
Log in

Modeling Hydration Water and its Role in Polymer Folding

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The hydrophobic effect is the dominant force which drives a proteintowards its native state, but its physics has not been thoroughlyunderstood yet. We introduce an exactly solvable model of the solvation ofnon-polar molecules in water, which shows that the reduced number ofallowed configurations of water molecules when the solute is present isenough to give rise to hydrophobic behaviour. We apply our model to anon-polar homopolymer in aqueous solution, obtaining a clear evidence ofboth `cold' and `warm' collapse transitions that recall those of proteins.Finally we show how the model can be adapted to describe the solvation ofaromatic and polar molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dill, K. A.: Biochemistry 29, 7133 (1990).

    Google Scholar 

  2. Muller, N.: J. Chem. Phys. 43, 2555 (1965); Lee, B. and Graziano, G.: J. Am. Chem. Soc. 118, 5163 (1996).

    Google Scholar 

  3. Silverstein, K. A. T., Haymet, A. D. J. and Dill, K. A.: J. Chem. Phys. 111, 8000 (1999).

    Google Scholar 

  4. Creighton, T. E.: Proteins, Structures and Molecular Properties, Freeman, New York, 1993.

    Google Scholar 

  5. Silverstein, K. A. T., Haymet, A. D. J. and Dill, K. A.: J. Am. Chem. Soc. 120, 3166 (1998).

    Google Scholar 

  6. Arthur, J. W. and Haymet, A. D. J.: J. Chem. Phys. 109, 7991 (1998), and references therein.

    Google Scholar 

  7. Makhatadze, G. I. and Privalov, P. L.: Adv. Prot. Chem. 47, 307 (1995).

    Google Scholar 

  8. Bruscolini, P. and Casetti, L.: Phys. Rev. E 61, R2208 (2000); De Los Rios, P. and Caldarelli, G.: cond-mat/9903394; cond-mat/0010155.

    Google Scholar 

  9. Bakk, A., Hø ye, J. S., Hansen, A. and Sneppen, K.; Hansen, A., Jensen, M. H., Sneppen, K. and Zocchi, G.: Eur. Phys. J B10, 193 (1999).

    Google Scholar 

  10. Bell, G. M. and Lavis, D. A.: J. Phys. A: Gen. Phys. 3, 568 (1970); Ben-Naim, A.: J. Chem. Phys. 54, 3682 (1971).

    Google Scholar 

  11. Arthur, J. W. and Haymet, A. D. J.: J. Chem. Phys. 110, 5873 (1999).

    Google Scholar 

  12. Douglas, J., Guttman, C. M., Mah, A. and Ishinabe, T.: Phys. Rev. E 55, 738 (1997).

    Google Scholar 

  13. Wu, C. and Wang, X.: Phys. Rev. Lett. 80, 4092 (1998); Tiktopulo, E. I., Bychkova, V. E., Rička, J. and Ptitsyn, O. B.: Macromolecules 27, 2879 (1994); Fujishige, S., Kubota, K. and Ando, I.: J. Phys. Chem. 93, 3311 (1989).

    Google Scholar 

  14. Burley, S. K. and Petsko, G. A.: Adv. Prot. Chem. 39, 125–189 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruscolini, P., Casetti, L. Modeling Hydration Water and its Role in Polymer Folding. Journal of Biological Physics 27, 243–256 (2001). https://doi.org/10.1023/A:1013194012354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013194012354

Navigation