Skip to main content
Log in

Spectroscopic and thermal contribution to the structural characterization of vandenbrandeite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The vibrational (IR and Raman) spectrum of Vandenbrandeite, Cu[UO2(OH)4], has been recorded and discussed on the basis of structural considerations through the use of empirical expressions. As the H-bonding in the lattice is poorly known, the characteristics of this bond has been analyzed with the aid of H/D isotope exchange, thermal assays and electron microscopy. Samples are practically amorphous to XRD up to ∼700°C whereas crystals morphologically different by SEM microscopy and well characterized by XRD technique are observed from ∼800°C. Vibrational spectroscopy reveals that the atomic arrangement in the structure remains largely unaffected as the dehydration proceeds, suggesting a topochemically controlled process. EPR spectroscopy suggests a disordered distribution of Cu(II) ions as temperature increases. Finally, thermal dehydroxylation and paragenesis of the copper-uranyl oxide hydrate are correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. FINCH and R. C. EWING, J. Nucl. Mater. 190 (1992) 133.

    Google Scholar 

  2. I. H. MILNE and E. W. NUFFIELD, Amer. Mineral. 36 (1951) 394.

    Google Scholar 

  3. A. ROSENWEIG and R. R. RYAN, Cryst. Struct. Comm. 6 (1977) 53.

    Google Scholar 

  4. A. SCHOEP, Ann. Musée Congo Belge Tervuren, A, sér. 1 Minéralogie 1 (1932) f. 3, 22.

    Google Scholar 

  5. J. CEJKA, N. Jb. Miner. Mh. H.3 (1994) 112.

    Google Scholar 

  6. M. DELIENS, P. PIRET and G. COMBLAIN (Musée Royal de l'Afrique Centrale, Tervuren, 1981) 113 p.

  7. V. D. C. DALTRY, Ann. Soc. Geol. Belgique 115 (1992) 33.

    Google Scholar 

  8. F. C. HAWTHORNE, Z. Krist 201 (1992) 183.

    Google Scholar 

  9. K. NAKAMOTO “Infrared and Raman Spectra of Inorganic and Coordination Compounds,” 4th ed. (J. Wiley, New York, 1986).

    Google Scholar 

  10. V. C. FARMER, “The Infrared Spectra of Minerals” (Mineral. Soc. London, London, 1974).

    Google Scholar 

  11. J. HENNING, K. BECKENKAMP and H. D. LUTZ, Appl. Spectrosc. 44 (1990) 992.

    Google Scholar 

  12. A. PERRIN, Thesis, Universit´e de Rennes, 1976, p. 210.

  13. V. LORENZELLI, T. DUPUIS and J. LECOMPTE, C. R. Acad. Sci. Paris 259 (1964) 1057.

    Google Scholar 

  14. E. A. SECCO, Can. J. Chem. 66 (1988) 329.

    Google Scholar 

  15. Z. URBANEC and J. CEJKA, Coll. Czech. Chem. Comm. 44 (1979) 1.

    Google Scholar 

  16. I. L. BOTTO, J. Less Comm. Metals 128 (1987) 47.

    Google Scholar 

  17. M. M. THERESE DUPUIS, C. DUVAL and J. LECOMPTE, C. R. Acad. Sci. Paris 257 (1963) 3080.

    Google Scholar 

  18. H. D. LUTZ, Spectrochim. Acta 24A (1968) 2107.

    Google Scholar 

  19. H. SIEBERT, “Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie” (Springer, Berlin, Heidelberg, New York, 1966).

    Google Scholar 

  20. S. J. GRABOWSKI, Croatica Chem. Acta 63 (1990) 647.

    Google Scholar 

  21. G. FERRARIS and G. IVALDI, Acta Crystallog. B44 (1988) 341.

    Google Scholar 

  22. J. CEJKA (JR), A. MUCK and J. CEJKA, Phys. Chem. Minerals 11 (1984) 172.

    Google Scholar 

  23. V. BARAN, Coll. Czech. Chem. Comm. 47 (1982) 1269.

    Google Scholar 

  24. I. L. BOTTO, E. J. BARAN and M. DELIENS, N. Jb.Miner. Mh. (1989) 212.

  25. J. I. BULLOCK, J. Inorg. Nucl. Chem. 29 (1964) 2257.

    Google Scholar 

  26. K. OHWADA and T. SOGA, Spectrochim. Acta 29A (1973) 843.

    Google Scholar 

  27. H. R. HOEKSTRA, J. Inorg. Nucl. Chem. 27 (1965) 801.

    Google Scholar 

  28. S. P. MCGLYNN, J. K. SMITH and W. C. NEELY, J. Chem. Phys. 35 (1961) 105.

    Google Scholar 

  29. B. W. VEAL, D. L. LAM, W. T. CARNALL and H. R. HOEKSTRA, Phys. Rev. B12 (1975) 5151.

    Google Scholar 

  30. V. A. GLEBOB, Koord. Khim. 7 (1981) 388.

    Google Scholar 

  31. V. N. SERYOZHKIN and L. B. SERERYOZHKINA, Zh. Neorg. Khim. 29 (1984) 1529.

    Google Scholar 

  32. S. D. ROSS, “Inorganic IR and Raman Spectra” (McGraw-Hill, London, 1972).

    Google Scholar 

  33. K. OHWADA, Spectrochim. Acta 24A (1968) 595.

    Google Scholar 

  34. M. PHAM THI, G. VELAZCO, PH. COLOMBAN and A. NOVAK, Solid State Ionics 9/10 (1983) 1055.

    Google Scholar 

  35. I. L. BOTTO, Acta Sudamer. Quim. 4 (1984) 71.

    Google Scholar 

  36. J. I. BULLOCK, J. Chem. Soc. A (1969) 781.

  37. E. J. BARAN and I. L. BOTTO, Monatsh. Chem. 107 (1976) 633.

    Google Scholar 

  38. J. H. JONES, Spectrochim. Acta 11 (1959) 409.

    Google Scholar 

  39. N. I. MCDEVITT and W. L. BAUN, ibid. 20 (1964) 799.

    Google Scholar 

  40. L. N. JAKES, L. N. SEDLAKOVA, J. MORAVEC and J. GERMANIC, J. Inorg. Nucl. Chem. 30 (1968) 525.

    Google Scholar 

  41. J. CEJKA, Z. URBANEC, J. CEJKA, JR and Z. MRAZEK, N. Jb. Miner. Abh. 159 (1988) 297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Botto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botto, I.L., Barone, V.L. & Sanchez, M.A. Spectroscopic and thermal contribution to the structural characterization of vandenbrandeite. Journal of Materials Science 37, 177–183 (2002). https://doi.org/10.1023/A:1013182917829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013182917829

Keywords

Navigation