Skip to main content
Log in

Density and Viscosity of the 1-Methylnaphthalene+2,2,4,4,6,8,8-Heptamethylnonane System from 293.15 to 353.15 K at Pressures up to 100 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The dynamic viscosity η of the binary mixture 1-methylnaphthalene+2,2,4,4,6,8,8-heptamethylnonane was measured in the temperature range 293.15 to 353.15 K (in progressive 10 K steps) at pressures of 0.1, 20, 40, 60, 80, and 100 MPa. The composition of the system is described by nine molar fractions (0 to 1 in 0.125 progressive steps). The density ρ was measured at pressures from 0.1 to 60 MPa in progressive 5 MPa steps. The measurements of η are used to determine the excess viscosity η E and the excess activation energy of flow ΔG E as a function of pressure, temperature, and composition. Some models have been used to represent the viscosity of this binary mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Daugé, A. Baylaucq, and C. Boned, High Temp. High Press. 31:665 (1999).

    Google Scholar 

  2. P. Daugé, X. Canet, A. Baylaucq, and C. Boned, High Temp. High Press. 33:213 (2001).

    Google Scholar 

  3. A. Et-Tahir, C. Boned, B. Lagourette, and P. Xans, Int. J. Thermophys. 16:1309 (1995).

    Google Scholar 

  4. M. Kanti, B. Lagourette, J. Alliez, and C. Boned, Fluid Phase Equil. 65:291 (1991).

    Google Scholar 

  5. U. G. Krahn and G. Luft, J. Chem. Eng. Data 39:670 (1994).

    Google Scholar 

  6. J. Zhang and H. Liu, J. Chem. Eng. Data 3:269 (1991).

    Google Scholar 

  7. F. Olive, K. R. Patil, A. Coronas, and F. Fernandez, Int. J. Thermophys. 15:661 (1994).

    Google Scholar 

  8. D. Papaioannou, M. Bridakis, and C. G. Panayiotou, J. Chem. Eng. Data 38:370 (1993).

    Google Scholar 

  9. L. Grunberg and A. H. Nissan, Nature 164:799 (1949).

    Google Scholar 

  10. P. K. Katti and M. M. Chaudhri, J. Chem. Eng. Data 9:442 (1964).

    Google Scholar 

  11. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw–Hill, New York, 1941).

    Google Scholar 

  12. P. Cea, C. Lafuente, J. P. Morand, F. M. Royo, and J. S. Urieta, Phys. Chem. Liquids 29:69 (1995).

    Google Scholar 

  13. E. Heric and J. G. Brewer, J. Chem. Eng. Data 12:574 (1967).

    Google Scholar 

  14. I.L. Acevedo, M. A. Postigo, and M. Katz, Phys. Chem. Liquids 21:87 (1990).

    Google Scholar 

  15. R. Bravo, M. Pintos, A. Amigo, and M. Garcia, Phys. Chem. Liquids 22:245 (1991).

    Google Scholar 

  16. M. Moha-Ouchane, C. Boned, A. Allal, and M. Benseddik, Int. J. Thermophys. 19:161 (1998).

    Google Scholar 

  17. C. Boned, M. Moha-Ouchane, A. Allal, and M. Benseddik, Int. J. Thermophys. 19:1325(1998).

    Google Scholar 

  18. M. Kanti, H. Zhou, S. Ye, C. Boned, B. Lagourette, H. Saint-Guirons, P. Xans, and F. Montel, J. Phys. Chem. 93:3860 (1989).

    Google Scholar 

  19. J. H. Dymond and M. A. Awan, Int. J. Thermophys. 10:941 (1989).

    Google Scholar 

  20. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Fluid Phase Equil. 75:245 (1992).

    Google Scholar 

  21. A. Baylaucq, M. Moha-Ouchane, and C. Boned, Phys. Chem. Liquids 38:353 (2000).

    Google Scholar 

  22. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13:659 (1992).

    Google Scholar 

  23. H. Mensah-Brown and W.A. Wakeham, Int. J. Thermophys. 15:117 (1994).

    Google Scholar 

  24. A. Allal, M. Moha-Ouchane, and C. Boned, Phys. Chem. Liquids 39:1 (2001).

    Google Scholar 

  25. P. Daugé, Thèse de Doctorat (Université de Pau, Pau, France, 1999).

    Google Scholar 

  26. A. Allal, C. Boned, and P. Daugé, Phys. Chem. Liquids (in press).

  27. S. E. Quiñones-Cisneros, C. K. Zéberg-Mikkelsen, and E. H. Stenby, Fluid Phase Equil. 169:249 (2000).

    Google Scholar 

  28. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fund. 15:59 (1976).

    Google Scholar 

  29. S. E. Quiñones-Cisneros, C. K. Zéberg-Mikkelsen, and E. H. Stenby, Fluid Phase Equil. 178:1 (2001).

    Google Scholar 

  30. C. K. Zéberg-Mikkelsen, Ph.D. thesis (Technical University of Denmark, Lyngby, Denmark, 2001).

    Google Scholar 

  31. T. E. Daubert and R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals Data Compilation (Hemisphere, New York, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Boned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canet, X., Daugé, P., Baylaucq, A. et al. Density and Viscosity of the 1-Methylnaphthalene+2,2,4,4,6,8,8-Heptamethylnonane System from 293.15 to 353.15 K at Pressures up to 100 MPa. International Journal of Thermophysics 22, 1669–1689 (2001). https://doi.org/10.1023/A:1013182715406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013182715406

Navigation