Skip to main content
Log in

Dispersion state and mechanical properties of core-shell particle modified epoxy networks

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dispersion of Core Shell particles (CS) in an epoxy network was analyzed by manual and automatic image processing methods yielding quantitative morphological indexes. These indexes were mainly based on the classical coefficient of variation, used for the statistics of the particles counted in a grid, or for the neighbor distances. The rubbery CS were either commercial or home made having different core nature, shell thickness and functionnalization (carboxy or epoxy). Two dispersion methods were used: a laboratory high speed mixer (“Ultraturrax”), or a co-rotating twin screw extruder with different screw profiles and temperature. The shell functionnalization was to be a key factor leading to high dispersion. Samples were taken along the extruder screws and analyzed. Multiple kneading blocs followed by reverse screw element were necessary for the obtention of a dispersion equivalent to the one obtained using the “Ultraturrax”. The presence of particles (9.5 to 24% in volume) slightly decreased the quasi-static mechanical properties, that is Young's modulus and yield strength. On the contrary, toughness is enhanced, as expected, especially with functionnalized particles. In addition, the scatter on the fracture properties was directly related to the morphological heterogeneity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. SULTAN and F. MCGARRY, Polym. Eng. Sci. 13 (1973) 19.

    Google Scholar 

  2. W. BASCOM, R. TNG, R. J. MOULTON, C. K. RIEW and A. R. SIEBERT, J. Mater. Sci. 16 (1981) 1657.

    Google Scholar 

  3. A. F. YEE and R. A. PEARSON, ibid. 21 (1986) 2475.

    Google Scholar 

  4. A. C. CARG and Y. W. MAI, Comp. Sci. Technol. 31 (1988) 179.

    Google Scholar 

  5. S. MONTARNAL, J. P. PASCAULT and H. SAUTEREAU, in “Rubber Toughened Plastics,” Adv. Chem. Ser. 222, Vol. 8, edited by C. K. Riew (ACS, New Orleans, 1989).

    Google Scholar 

  6. D. VERCHÈRE, J. P. PASCAULT, H. SAUTEREAU, S. M. MOSHIAR, C. C. RICCARDI and R. J. J. WILLIAMS, J. Appl. Polym. Sci. 42 (1991) 701.

    Google Scholar 

  7. A. MAAZOUZ, H. SAUTEREAU and J. F. GÉRARD, Polym. Networks Blends 2 (1992) 65.

    Google Scholar 

  8. C. B. BUCKNALL and I. K. PARTRIDGE, Polymer 24 (1983) 639.

    Google Scholar 

  9. R. A. PEARSON and A. F. YEE, ibid. 34 (1993) 3658.

    Google Scholar 

  10. R. A. PEARSON, in “Rubber Toughened Plastics,” Adv. Chem. Ser. 233, edited by C. K. Riew and A. J. Kinloch (ACS, Washington D.C., 1993) p. 405.

    Google Scholar 

  11. E. GIRARD-REYDET, V. VICARD, J. P. PASCAULT and H. SAUTEREAU, J. Appl. Polym. Sci. 65 (1997) 2433.

    Google Scholar 

  12. “Acryloid Impact Modifiers,” Product brochure MR 119, Rohm and Haas Co. (1984).

  13. T. KOJIMA, Y. KIKUCHI and T. INOUE, Polym. Engng. Sci. 32(24) (1992) 1863.

    Google Scholar 

  14. L. BECU, H. SAUTEREAU, A. MAAZOUZ, J. F. GÉ RARD, M. PABON and C. PICHOT, Polym. Adv. Technol. 6 (1995) 316.

    Google Scholar 

  15. G. LEVITA, A. MARCHETTI and A. LAZZERI, Makromol. Chem., Makromol. Symp. 41 (1991) 179.

    Google Scholar 

  16. Y. C. CHEN, V. DIMONIE and M. S. EL-AASSER, Macromolecules 24 (1991) 3779.

    Google Scholar 

  17. H. J. SUE, J. L. BERTRAM, E. I. GARCIA-MARTIN, J. W. WILCHESTER and L. L. WALKER, Colloïd Polym. Sci. 272 (1994) 456.

    Google Scholar 

  18. M. S. EL-AASSER, I. SEGALL and V. L. DIMONIE, Macromol. Symp. 101 (1996) 517.

    Google Scholar 

  19. D. S. KIM, K. CHO, J. K. KIM and C. E. PARK, Polym. Eng. Sci. 36(6) (1996) 755.

    Google Scholar 

  20. J. Y. QIAN, R. A. PEARSON, V. L. DIMONIE and M. S. EL-AASSER, J. Appl. Polym. Sci. 58 (1995) 439.

    Google Scholar 

  21. A. J. KINLOCH, M. L. YUEN and S. D. JENKINS, J. Mater. Sci. 29 (1994) 3781.

    Google Scholar 

  22. D. DOMPAS and G. GREENINCKX, Polymer 35 (1994) 4743.

    Google Scholar 

  23. Y. SUETESUGU, in MOFFIS Symposium, Mineral and Organic Functional Fillers in Polymers, Namur, Belgium, 1993, preprint, p. 37.

  24. S. WU, Polymer 26 (1985) 1855.

    Google Scholar 

  25. Idem., J. Appl. Polym. Sci. 35 (1988) 549.

    Google Scholar 

  26. P. A. LOVELL, A. J. RYAN, M. N. SHERRAT and R. J. YOUNG, in Polymat 94, The Institute of Materials, London, September 1994, preprint, p. 578.

  27. A. F. LU, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 172p., 1995.

  28. L. SUSPÈNE, J. F. GÉRARD and J. P. PASCAULT, Polym. Eng. Sci. 30(24) (1990) 1585.

    Google Scholar 

  29. C. CHENG, A. HILTNER, E. BAER, P. R. SOSKEY and S. G. MYLONAKIS, J. Appl. Polym. Sci. 55 (1995) 1691.

    Google Scholar 

  30. V. SVEHLOVÁ, in Proceedings of the 28th Microsymposium on Macromolecules, “Polymer Composites,” Prague, Czechoslovakia, July 1985, edited by B. Sedlà ček (Walter de Gruyter, Berlin, 1986) p. 607.

    Google Scholar 

  31. Y. J. M. BRECHET, Mater. Sci. Eng. A175 (1994) 63.

    Google Scholar 

  32. PH. COCHET, P. BARRUEL, L. BARRIQUAND, J. GROBERT, Y. BOMAL and E. PRAT, Meeting of the Rubber Division, ACS, Orlando, USA, 26–29 October 1993.

  33. L. GANESAN, P. BHATTACHARYYA and A. K. BHOWMICK, J. Appl. Polym. Sci. 56 (1995) 1739.

    Google Scholar 

  34. H. YANG and J. S. COLTON, Polym. Compos. 15(1) (1994) 46.

    Google Scholar 

  35. J. HUANG, Y. SHI and A. F. YEE, “Polymeric Materials” (ACS, Anaheim, 1995) p. 258.

    Google Scholar 

  36. F. DOLAN, D. TAYLOR and P. A. BLACKIE, in Polymat 94, The Institute of Materials, London, September 1994, preprint, p. 593.

    Google Scholar 

  37. C. TITIER, J. P. PASCAULT, and M. TAHA, J. Appl. Polym. Sci. 59 (1996) 415.

    Google Scholar 

  38. P. CASSAGNAU and M. TAHA, ibid. 60 (1996) 1765.

    Google Scholar 

  39. J. G. WILLIAMS, in “Fracture Mechanics of Polymers,” edited by Ellis Horwood (Chichester, UK, 1987).

    Google Scholar 

  40. A. MAAZOUZ, H. SAUTEREAU and J. F. GÉRARD, Polym. Bull. (Berlin) 33 (1994) 67. Received 21 March and accepted 10 August 2001 49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becu, L., Taha, M., Maazouz, A. et al. Dispersion state and mechanical properties of core-shell particle modified epoxy networks. Journal of Materials Science 37, 41–49 (2002). https://doi.org/10.1023/A:1013181405109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013181405109

Keywords

Navigation