Skip to main content
Log in

Infinite Dilution Binary Diffusion Coefficients of Benzene in Carbon Dioxide by the Taylor Dispersion Technique at Temperatures from 308.15 to 328.15 K and Pressures from 6 to 30 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Infinite dilution binary diffusion coefficients, D 12, of benzene in carbon dioxide were measured by the Taylor dispersion technique at temperatures from 308.15 to 328.15 K and pressures from 6 to 30 MPa. The diffusion coefficients were obtained by the method of fitting in the time domain from the response curves measured with a UV–vis multidetector by scanning from 220 to 280 nm at increments of 1 or 4 nm. The wavelength dependences on the binary diffusion coefficient and the uncertainty were examined. The detector linearity, in terms of the relationship between the absorbance intensity and the product of the peak area of the response curve and CO2 velocity, was found to fail at some characteristic absorption wavelengths such as 243, 248, 253, and 259 nm, even when the maximum absorbance intensities of the response curves were less than 0.5 and the fits were good. Although the D 12 values obtained from the response curves measured at 253 nm were almost consistent with some literature data, the D 12 values measured at wavelengths showing the detector linearity to be satisfactory, i.e., at 239 nm, were higher than those at 253 nm. The present D 12 data at 239 nm were well represented by the Schmidt number correlation, except for those showing the anomalous decrease in a plot of D 12 vs density in the density range from 250 to 500 kg·m−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Swaid and G. M. Schneider, Ber. Bunsenges. Phys. Chem. 83:969 (1979).

    Google Scholar 

  2. R. Feist and G. M. Schneider, Sep. Sci. Technol. 17:261 (1982).

    Google Scholar 

  3. P. R. Sassiat, P. Mourier, M. H. Caude, and R. H. Rosset, Anal. Chem. 59:1164 (1987).

    Google Scholar 

  4. T. Funazukuri, S. Hachisu, and N. Wakao, Anal. Chem. 61:118 (1989).

    Google Scholar 

  5. C. Erkey, H. Gadalla, and A. Akgerman, J. Supercrit. Fluids 3:180 (1990).

    Google Scholar 

  6. T. Funazukuri, S. Hachisu, and N. Wakao, Ind. Eng. Chem. Res. 30:1323 (1991).

    Google Scholar 

  7. S. V. Olesik and J. L. Woodruff, Anal. Chem. 63:670 (1991).

    Google Scholar 

  8. T. Funazukuri, Y. Ishiwata, and N. Wakao, AIChE J. 38:1761 (1992).

    Google Scholar 

  9. S. Umezawa and A. Nagashima, J. Supercrit. Fluids 5:242 (1992).

    Google Scholar 

  10. J. L. Bueno, J. J. Suárez, J. Dizy, and I. Medina, J. Chem. Eng. Data 38:344 (1993).

    Google Scholar 

  11. J. M. H. Levelt Sengers, U. K. Deiters, U. Klask, P. Swidersky, and G. M. Schneider, Int. J. Thermophys. 14:893 (1993).

    Google Scholar 

  12. J. J. Suárez, J. L. Bueno, and I. Medina, Chem. Eng. Sci. 48:2419 (1993).

    Google Scholar 

  13. T. Funazukuri and N. Nishimoto, Fluid Phase Equil. 125:235 (1996).

    Google Scholar 

  14. K. Ago and H. Nishiumi, J. Chem. Eng. Jpn 32:563 (1999).

    Google Scholar 

  15. T. Funazukuri, C. Y. Kong, and S. Kagei, Int. J. Thermophys. 21:651 (2000).

    Google Scholar 

  16. T. Funazukuri, C. Y. Kong, and S. Kagei, Int. J. Thermophys. 21:1279 (2000).

    Google Scholar 

  17. G. Taylor, Proc. Roy. Soc. London A 219:186 (1953).

    Google Scholar 

  18. R. Aris, Proc. Roy. Soc. London A 235:67 (1956).

    Google Scholar 

  19. T. Funazukuri, C. Y. Kong, and S. Kagei, Ind. Eng. Chem. Res. 39:4462 (2000).

    Google Scholar 

  20. T. Funazukuri and Y. Ishiwata, Fluid Phase Equil. 164:117 (1999).

    Google Scholar 

  21. T. Funazukuri, N. Nishimoto, and N. Wakao, J. Chem. Eng. Data 39:911 (1994).

    Google Scholar 

  22. A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 1:243 (1980).

    Google Scholar 

  23. T. Funazukuri and N. Wakao, Preprint of the AIChE fall meeting, New Orleans (1993).

  24. J. H. Dymond, J. Phys. Chem. 85:3291 (1981).

    Google Scholar 

  25. H. Higashi, Y. Iwai, Y. Takahashi, H. Uchida, and Y. Arai, Fluid Phase Equil. 144:269 (1998).

    Google Scholar 

  26. H. Higashi, Y. Iwai, Y. Nakamura, S. Yamamoto, and Y. Arai, Fluid Phase Equil. 166:101 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Funazukuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funazukuri, T., Kong, C.Y. & Kagei, S. Infinite Dilution Binary Diffusion Coefficients of Benzene in Carbon Dioxide by the Taylor Dispersion Technique at Temperatures from 308.15 to 328.15 K and Pressures from 6 to 30 MPa. International Journal of Thermophysics 22, 1643–1660 (2001). https://doi.org/10.1023/A:1013178614497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013178614497

Navigation