Skip to main content
Log in

Non-Isomerizable Artificial Pigments: Implications for the Primary Light-Induced Events in Bacteriorhodopsin

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the “critical” C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump–probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. An additional approach is based on the light-induced cleavage of the protonated Schiff base bond that links retinal to the protein by reacting with hydroxylamine. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that in bR the initial relaxation out of the Franck–Condon (FC) state does not involve sub-stantial C13=C14 torsional motion and is considerably catalyzed by the protein matrix. Prior to the decay of the relaxed fluorescent state (FS or I state), the protein is activated via a mechanism that does not require double bond isomerization. Most plausibly, it is a result of charge delocalization in the excited state of the polyene (or other) chromophores. More generally, it is concluded that proteins and other macromolecules may undergo structural changes (that may affect their chemical reactivity) following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ottolenghi, M., and Sheves, M. (eds.) (1995) The Photophysics and Photochemistry of Retinal Proteins. Isr. J. Chem., 35, 193–515.

  2. Lanyi, J. (ed.) (2000) Biochim. Biophys. Acta Bioenerg., 1460, 1–239.

    Google Scholar 

  3. Haupt, U., Tittor, J., and Oesterhelt, D. (1999) Ann. Rev. Biophys. Biomol. Struct., 21, 367–399.

    Google Scholar 

  4. Kochendoerfer, G. G., and Mathies, R. A. (1995) Isr. J. Chem., 35, 211–226.

    Google Scholar 

  5. Stuart, J. A., and Birge, R. R. (1996) Biomembranes, 2A, 33–139.

    Google Scholar 

  6. Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J., and Ebrey, T. G. (1977) Pure Appl. Chem., 49, 341–351.

    Google Scholar 

  7. Hurley, J., Ebrey, T. G., Honig, B., and Ottolenghi, M. (1977) Nature (London), 270, 540–542.

    Google Scholar 

  8. Sharkov, S., Pakulev, A., Chekalin, S., and Matveetz, Y. (1985) Biochim. Biophys. Acta, 808, 94–102.

    Google Scholar 

  9. Mathies, R. A., Brito-Cruz, C. H., Pollard, T. W., and Shank, C. V. (1988) Science, 240, 777–779.

    Google Scholar 

  10. Dobler, J., Zinth, W., Kaiser, K., and Oesterhelt, D. (1988) Chem. Phys., 144, 215–220.

    Google Scholar 

  11. Kobayashi, T., Terauchi, M., Kouyama, T., Yoshizawa, M., and Taiji, M. (1990) SPIE, 1403, 407–416.

    Google Scholar 

  12. Kobayashi, T., Kim, M., Taiji, M., Iwasa, T., Nakagawa, M., and Tsuda, M. (1998) J. Phys. Chem. B., 102, 272–280.

    Google Scholar 

  13. Gai, F., Hasson, H. C., McDonald Kooper, J., and Anfinrud, P. A. (1998) Science, 279, 1886–1891.

    Google Scholar 

  14. Arlt, T., Schmidt, S., Zinth, W., Haupts, U., and Oesterhelt, D. (1995) Chem. Phys. Lett., 241, 559–565.

    Google Scholar 

  15. Kandori, H., Yoshihara, K., Tomioka, H., and Sasabe, H. (1992) J. Phys. Chem., 96, 6066–6071.

    Google Scholar 

  16. Loppnow, G. R., and Mathies, R. A. (1988) Biophys. J., 54, 35–43.

    Google Scholar 

  17. Palings, I., Pardoen, J. A., van den Berg, E., Winkel, C., Lugetenburg, J., and Mathies, R. A. (1987) Biochemistry, 26, 2544–2556.

    Google Scholar 

  18. Hasson, K. C., Gai, F., and Anfinrud, P. A. (1996) Proc. Natl. Acad. Sci. USA, 93, 16124–16129.

    Google Scholar 

  19. Humphrey, W., Lu, H., Logunov, I., Werner, H., and Schulten, K. (1998) Biophys. J., 75, 1689–1699.

    Google Scholar 

  20. Gonzalez-Luque, R., Garavelli, M., Bernardi, F., Merchan, M., Robb, M., and Olivucci, M. (2000) Proc. Natl. Acad. Sci. USA, 17, 9379–9384.

    Google Scholar 

  21. Salem, L., and Bruckmann, P. (1975) Nature (London), 258, 526–529.

    Google Scholar 

  22. Lewis, A. (1978) Proc. Natl. Acad. Sci. USA, 75, 543–547.

    Google Scholar 

  23. Xu, D., Martin, D., and Schulten, K. (1996) Biophys. J., 70, 453–460.

    Google Scholar 

  24. Ottolenghi, M., and Sheves, M. (1989) J. Membr. Biol., 112, 193–212.

    Google Scholar 

  25. Nakanishi, K., and Crouch, R. (1995) J. Isr. Chem., 35, 253–272.

    Google Scholar 

  26. Haran, G., Wynne, K., Xie, A., He, Q., Chance, M., and Hochstasser, R. M. (1996) Chem. Phys. Lett., 26, 389–395.

    Google Scholar 

  27. Gai, G., McDonald, P. A., and Anfinrud, P. A. (1997) J. Am. Chem. Soc., 119, 6201–6202.

    Google Scholar 

  28. Zhong, Q., Ruhman, S., Ottolenghi, M., Sheves, M., Friedman, N., Atkinson, G. H., and Delaney, J. K. (1996) J. Am. Chem. Soc., 118, 12828–12829.

    Google Scholar 

  29. Ye, T., Friedman, N., Gat, Y., Atkinson, G., Sheves, M., Ottolenghi, M., and Ruhman, S. (1999) J. Phys. Chem. B, 103, 5122–5130.

    Google Scholar 

  30. Akiyama, R., Yoshimori, A., Kakitani, T., Imamoto, Y., Shichida, Y., and Hatamo, Y. (1997) J. Phys. Chem. A, 101, 412–417.

    Google Scholar 

  31. Myers, A., Harris, R., and Mathies, R. (1983) J. Phys. Chem., 79, 603–613.

    Google Scholar 

  32. Garavelli, M., Celani, P., Bernardi, F., Robb, M. A., and Olivucci, M. (1997) J. Am. Chem. Soc., 119, 6891–6901.

    Google Scholar 

  33. Song, L., and El-Sayed, M. (1998) J. Am. Chem. Soc., 120, 8889–8890.

    Google Scholar 

  34. Govindjee, R., Balashov, V. S., and Ebrey, T. (1990) Biophys. J., 58, 597–608.

    Google Scholar 

  35. Balashov, S. P., Karneeva, N. V., Litvin, F. F., and Sineshchekov, V. A. (1987) in Retinal Proteins (Ovchinnikov, Yu. A., ed.) VNU Science Press, Utrecht, The Netherlands, pp. 505–517.

    Google Scholar 

  36. Dexheimer, S. L., Wang, Q., Peteanu, L. A., Pollard, W. T., Mathies, R. A., and Shank, C. V. (1992) Chem. Phys. Lett., 188, 61–67.

    Google Scholar 

  37. Wang, Q., Schoenlein, R., Peteanu, L., Mathies R., and Shank, C. (1994) Science, 266, 422–424.

    Google Scholar 

  38. Althaus, T., Weisfeld, R., Lohrmann, M., and Stockburger, M. (1995) Isr. J. Chem., 35, 227–251.

    Google Scholar 

  39. Ye, T., Gershgoren, E., Friedman, N., Ottolenghi, M., Sheves, M., and Ruhman, S. (1999) Chem Phys., 314, 429–434.

    Google Scholar 

  40. Garavelli, M., Negri, F., and Olivucci, M. (1999) J. Am. Chem. Soc., 121, 1023–1029.

    Google Scholar 

  41. Kandori, H., and Sasabe, H. (1993) Chem. Phys. Lett., 216, 126–132.

    Google Scholar 

  42. Kandori, H., Katsuta, Y., Ito, M., and Sasabe, H. (1995) J. Am. Chem. Soc., 117, 2669–2670.

    Google Scholar 

  43. Logunov, S. L., Song, L., and El-Sayed, M. A. (1996) J. Phys. Chem., 100, 18586–18591.

    Google Scholar 

  44. Hamm, P., Zurek, M., Röschinger, T., Patzelt, H., Oesterhelt, D., and Zinth, W. (1996) Chem. Phys. Lett., 263, 613–621.

    Google Scholar 

  45. Hou, B., Friedman, N., Ruhman, S., Sheves, M., and Ottolenghi, M. (2001) J. Phys. Chem., in press.

  46. Rousso, I., Khachatryan, E., Gat, Y., Brodsky, I., Ottolenghi, M., Sheves, M., and Lewis, A. (1997) Proc. Natl. Acad. Sci. USA, 94, 7937–7941.

    Google Scholar 

  47. Losi, A., Michler, J., Gartner, W., and Braslavsky, S. (2000) Photochem. Photobiol., 72, 590–597.

    Google Scholar 

  48. Oesterhelt, D., Meetzen, M., and Schumann, L. (1973) Eur. J. Biochem., 40, 453–463.

    Google Scholar 

  49. Oesterhelt, D., Shumann, L., and Gruber, H. (1974) FEBS Lett., 44, 257–261.

    Google Scholar 

  50. Subramaniam, S., Marti, T., Rösselet, S. J., Rothschild, K. J., and Khorana, H. G. (1991) Proc. Natl. Acad. Sci. USA, 88, 2583–2587.

    Google Scholar 

  51. Rousso, I., Gat, Y., Lewis, A., Sheves, M., and Ottolenghi, M. (1998) Biophys. J., 75, 413–417.

    Google Scholar 

  52. Aharoni, A., Weiner, L., Ottolenghi, M., and Sheves, M. (2000) J. Biol. Chem., 275, 21010–21016.

    Google Scholar 

  53. Feix, Y. B., and King, C. (1998) Spin-Labeling, Plenum Press, New York, pp. 251–281.

    Google Scholar 

  54. Hubbell, W., Gross, A., Langen, R., and Leitzow, M. (1998) Curr. Opin. Struct. Biol., 8, 649–656.

    Google Scholar 

  55. Altenbach, C., Fitsch, L., Khorana, H. G., and Hubbell, W. (1989) Biochemistry, 28, 7806–7812.

    Google Scholar 

  56. Altenbach, C., Marti, T., Khorana, H. G., and Hubbell, W. (1990) Science, 248, 1088–1092.

    Google Scholar 

  57. Steinhoff, H., Mollaaghababa, R., Altenbach, C., Hideg, K., Krebs, M., Khorana, H. G., and Hubbell, W. (1994) Science, 266, 105–107.

    Google Scholar 

  58. Hubbell, W., and Altenbach, C. (1994) Curr. Opin. Struct. Biol., 4, 566–573.

    Google Scholar 

  59. Thorgeirsson, T., Xiao, W., Brown, L., Needleman, R., Lanyi, J., and Shin, Y. (1997) J. Mol. Biol., 273, 951–957.

    Google Scholar 

  60. Rink, T., Riesk, J., Oesterhelt, D., Gerwert, K., and Steinhoff, H. (1997) Biophys. J., 73, 983–993.

    Google Scholar 

  61. Pfeiffer, M., Rink, T., Gerwert, K., Oesterhelt, D., and Steinhoff, H. (1999) J. Mol. Biol., 275, 163–171.

    Google Scholar 

  62. Aharoni, A., Weiner, L., Ottolenghi M., and Sheves, M. (2001) J. Am. Chem. Soc., 123, 6612–6616.

    Google Scholar 

  63. Huang, J., Chen, Z., and Lewis, A. (1989) J. Phys. Chem., 93, 3314–3320.

    Google Scholar 

  64. Birge, R., and Zheng, X. (1990) J. Chem. Phys., 94, 7178–7179.

    Google Scholar 

  65. Clays, K., Hendrick, E., Triest, M., Verhiest, T., Persoons, A., Dehu, C., and Bredas, J. (1993) Science, 262, 1419–1422.

    Google Scholar 

  66. Birge, R., and Zhang, C. (1990) J. Chem. Phys., 92, 7178–7195.

    Google Scholar 

  67. Atkinson, G. H., Ujj, L., and Zhou, Y. (2000) J. Phys. Chem., 104, 4130–4139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharoni, A., Hou, B., Friedman, N. et al. Non-Isomerizable Artificial Pigments: Implications for the Primary Light-Induced Events in Bacteriorhodopsin. Biochemistry (Moscow) 66, 1210–1219 (2001). https://doi.org/10.1023/A:1013175000873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013175000873

Navigation