Microbiology

, Volume 70, Issue 6, pp 623–632 | Cite as

Aerobic Methylotrophic Bacteria as Phytosymbionts

  • Yu. A. Trotsenko
  • E. G. Ivanova
  • N. V. Doronina

Abstract

This paper deals with the physiological, biochemical, and molecular genetic aspects of the interaction of aerobic methylotrophic bacteria with plants by means of phytohormones (such as cytokinins and auxins) and other physiologically active substances (vitamins, exopolysaccharides, bioprotectants, and others). An overview of the field and the prospects of research in the field of bacteria–plant interactions and the application of aerobic methylotrophs in plant biotechnology is discussed.

aerobic methylotrophic bacteria phytosymbiosis cytokinins auxins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthony, C., The Biochemistry of Methylotrophs, London: Academic, 1982.Google Scholar
  2. 2.
    Hanson, R.S. and Hanson, T.E., Methanotrophic Bacteria, Microbiol. Rev., 1996, vol. 60, no. 2, pp. 439–471.Google Scholar
  3. 3.
    Zavarzin, G.A. and Vasil'eva, L.V., The Methane Cycle in Russia, Krugovorot ugleroda v Rossii (The Carbon Cycle in Russia), Zavarzin, G.A., Ed., Moscow, 1999, pp. 202–230.Google Scholar
  4. 4.
    Leisinger, T., Biodegradation of Chlorinated Aliphatic Compounds, Curr. Opin. Biotechnol., 1996, vol. 7, pp. 295–300.Google Scholar
  5. 5.
    DeZwart, J.M., Nelisse, P.N., and Kuenen, J.G., Isolation and Characterization of Methylophaga sulfidovorans sp. nov.: An Obligately Methylotrophic, Aerobic, Dimethyl Sulfide–oxidizing Bacterium from a Microbial Mat, FEMS Microbiol. Ecol., 1996, vol. 20, pp. 261–270.Google Scholar
  6. 6.
    Marco, P., Murrell, J.C., Bordalo, A.A., and Moradas-Ferreia, P., Isolation and Characterization of Two New Methanesulfonic Acid–degrading Isolates from a Portuguese Soil Sample, Arch. Microbiol., 2000, vol. 173, pp. 146–153.Google Scholar
  7. 7.
    Trotsenko, Yu.A. and Loginova, N.V., Pathways Involved in the Metabolism of Methylated Amines in Bacteria, Usp. Mikrobiol., 1979, vol. 14, pp. 28–55.Google Scholar
  8. 8.
    Corpe, W.A., A Method for Detecting Methylotrophic Bacteria on Solid Surfaces, J. Microbiol. Methods, 1985, vol. 3, pp. 215–221.Google Scholar
  9. 9.
    Basile, B.V., Slede, L., and Corpe, W.A., An Association Between a Bacterium and a Liverwort Scapania numerosa, Bull. Torrey Bot. Club, 1969, vol. 69, pp. 711–714.Google Scholar
  10. 10.
    Dickinson, C.H., Austin, B., and Goodfellow, M., Quantitative and Qualitative Studies of Phylloplane Bacteria from Lolium perene, J. Gen. Microbiol., 1975, vol. 91, pp. 157–166.Google Scholar
  11. 11.
    Austin, B. and Goodfellow, M., Pseudomonas mesophilica, a New Species of Pink Bacteria Isolated from Leaf Surfaces, Int. J. Syst. Bacteriol., 1979, vol. 29, no. 1, pp. 373–378.Google Scholar
  12. 12.
    Green, P.N. and Bousfield, I.J., Taxonomic Study of Some Gram-Negative Facultatively Methylotrophic Bacteria, J. Gen. Microbiol., 1982, vol. 128, pp. 623–638.Google Scholar
  13. 13.
    Corpe, W.A., Jensen, T.E., and Baxter, M., Fine Structure of Cytoplasmic Inclusions of Some Methylotrophic Bacteria from Plant Surfaces, Arch. Microbiol., 1986, vol. 145, pp. 107–112.Google Scholar
  14. 14.
    Green, P.N. and Bousfield, I.J., Emendation of Methylobacterium (Patt, Cole, and Hanson 1976); Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov., Int. J. Syst. Bacteriol., 1983, vol. 33, pp. 875–877.Google Scholar
  15. 15.
    Corpe, W.A. and Rheem, S., Ecology of the Methylotrophic Bacteria Living on Leaf Surfaces, FEMS Microbiol. Ecol., 1989, vol. 62, no. 2, pp. 243–248.Google Scholar
  16. 16.
    Chanprame, S., Todd, J.J., and Widholm, J.M., Prevention of Pink-pigmented Methylotrophic Bacteria (Methylobacterium mesophilicum) Contamination of Plant Tissue Cultures, Plant Cell Reports, 1996, vol. 16, no. 1, pp. 222–225.Google Scholar
  17. 17.
    Romanovskaya, V.A., Stolyar, S.M., and Malashenko, Yu.R., Distribution of Bacteria of the Genus Methylobacterium in Different Ecosystems of Ukraine, Mikrobiol. Zh. (Kiev), 1996, vol. 58, no. 3, pp. 3–10.Google Scholar
  18. 18.
    Romanovskaya, V.A., Sokolov, I.G., Malashenko, Yu.R., and Rokitko, P. V., Mutability of Epiphytic and Soil Bacteria of the Genus Methylobacterium and Their Resistance to Ultraviolet and Ionizing Radiation, Mikrobiologiya, 1998, vol. 67, no. 1, pp. 106–115.Google Scholar
  19. 19.
    Doronina, N.V. and Trotsenko, Yu.A., A New Thermotolerant Alkaliphilic Plant-associated Methylotroph of the Genus Paracoccus, Mikrobiologiya, vol. 69, no. 5, pp. 706–711.Google Scholar
  20. 20.
    Doronina, N.V., Kudinova, L.V., and Trotsenko, Yu.A., Methylovorus mays, a New Species of Plant-associated Obligate Methylobacteria, Mikrobiologiya, 2000, vol. 69, no. 5, pp. 599–603.Google Scholar
  21. 21.
    King, G.M., In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of Bur Reed, Sparganium eurycarpum, in a Maine Wetland, Appl. Environ. Microbiol., 1996, vol. 62, no. 12, pp. 4548–4555.Google Scholar
  22. 22.
    Calhoun, A. and King, G.M., Regulation of Root-associated Methanotrophy by Oxygen Availability in the Rhizosphere of Two Aquatic Macrophytes, Appl. Environ. Microbiol., 1997, vol. 63, no. 8, pp. 3051–3058.Google Scholar
  23. 23.
    Bosse, V. and Frensel, P., Activity and Distribution of Methane-oxidizing Bacteria in Flooded Rice Soil Microcosm and Rice Plants (Oryza sativa), Appl. Environ. Microbiol., 1997, vol. 63, no. 4, pp. 1199–1207.Google Scholar
  24. 24.
    Gilbert, B., Abmus, B., Hartman, A., and Frenzel, P., In Situ Localization of Two Methanotrophic Strains in the Rhizosphere of Rice Plants, FEMS Microbiol. Ecol., 1998, vol. 25, no. 2, pp. 117–128.Google Scholar
  25. 25.
    Dedysh, S.N., Panikov, N.S., and Tiedje, J.M., Acidophilic Methanotrophic Communities from Sphagnum Peat Bogs, Appl. Environ. Microbiol., 1998, vol. 64, no. 3, pp. 922–929.Google Scholar
  26. 26.
    Dedysh, S.N., Panikov, N.S., Liesack, W., Grobkopf, R., Zhou, J., and Tiedje, J.M., Isolation of Acidophilic Methane-oxidizing Bacteria from Northern Peat Wetlands, Science, 1998, vol. 282, no. 5387, pp. 281–284.Google Scholar
  27. 27.
    Dedysh, S.N., Liesack, W., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., Bares, A.M., Panikov, N.S., and Tiedje, J.M., Methylocella palustris gen. nov., sp. nov., a New Methane-oxidizing Acidophilic Bacterium from Peat Bogs, Representing a Novel Subtype of Serine-Pathway Methanotrophs, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, no. 3, pp. 955–969.Google Scholar
  28. 28.
    Omel'chenko, M.V., Vasil'eva, L.V., Zavarzin, G.A., Savel'eva, N.D., Lysenko, A.M., Mityushina, L.L., Khmelenina, V.N., and Trotsenko, Yu.A., A Novel Psychrophilic Methanotroph of the Genus Methylobacter, Mikrobiologiya, 1996, vol. 65, no. 3, pp. 339–343.Google Scholar
  29. 29.
    Vecherskaya, M.S., Galchenko, V.F., Sokolova, E.N., and Samarkin, V.A., Activity and Species Composition of Aerobic Methanotrophic Communities in Tundra Soils, Curr. Microbiol., 1993, vol. 27, no. 3, pp. 181–184.Google Scholar
  30. 30.
    Vasil'eva, L.V., Berestovskaya, Yu.Y., and Zavarzin, G.A., Psychrophilic Acidophilic Methanotrophs from a Sphagnum Peatland in the Permafrost Zone, Dokl. Akad. Nauk, 1999, vol. 368, no. 1, pp. 125–128.Google Scholar
  31. 31.
    Kalyuzhnaya, M.G., Makutina, V.A., Rusakova, T.G., Nikitin, D.V., Khmelenina, V.N., Dmitriev, V.V., and Trotsenko, Yu.A., Methanotrophic Soil Communities in Russian Northern Taiga and Subarctic Tundra, Mikrobiologiya (in press).Google Scholar
  32. 32.
    MacDonald, R.C. and Fall, R., Detection of Substantial Emissions of Methanol from Plants to the Atmosphere, Atmos. Environ., 1993, vol. 27, pp. 1709–1713.Google Scholar
  33. 33.
    Fall, R., Cycling of Methanol Between Plants, Methylotrophs, and the Atmosphere, Microbial Growth on C 1 Compounds, Lidstrom, M.E. and Tabita, F.R., Eds., Dordrecht: Kluwer Academic, 1996, pp. 343–350.Google Scholar
  34. 34.
    Nemecek-Marshall, M., MacDonald, R.C., Franzen, J.J., Wojciechowski, C.L., and Fall, R., Methanol Emission from Leaves, Plant Physiol., 1995, vol. 108, no. 4, pp. 1359–1368.Google Scholar
  35. 35.
    Holland, M.A., Methylobacterium and Plants, Recent Res. Develop. Plant Physiol., 1997, vol. 1, pp. 207–213.Google Scholar
  36. 36.
    Nonomura, A.M. and Benson, A.A., The Path of Carbon in Photosynthesis: Improved Crop Yields with Methanol, Proc. Natl. Acad. Sci. USA, 1991, vol. 89, pp. 9794–9798.Google Scholar
  37. 37.
    Nishio, N., Tsuchiya, Y., Hayashi, M., and Nagai, S., A Fed-Batch Culture of Methanol-utilizing Bacteria with pH-Stat, J. Ferment. Technol., 1977, vol. 55, pp. 151–155.Google Scholar
  38. 38.
    Kalyaeva, M.A., Zakharchenko, M.S., Doronina, N.V., Rukavtsova, E.B., Alekseeva, V.V., Ivanova, E.G., Trotsenko, Yu.A., and Bur'yanov, Ya.I., Stimulation of Plant Growth and Morphogenesis In Vitro by Associative Methylotrophic Bacteria, Fiziol. Rast., 2001, vol. 48, no. 4, pp. 595–599.Google Scholar
  39. 39.
    Murrell, J.C. and Dalton, H., Nitrogen Fixation in Obligate Methanotrophs, J. Gen. Microbiol., 1983, vol. 129, no. 11, pp. 3481–3486.Google Scholar
  40. 40.
    Krumholz, L.R., Hollenback, J.L., Roskes, S.J., and Ringelberg, D.B., Methanogenesis and Methanotrophy within a Sphagnum Peatland, FEMS Microbiol. Ecol., 1995, vol. 18, pp. 215–224.Google Scholar
  41. 41.
    Wiegel, S., The Genus Xanthobacter, The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Balows, A. et al., Eds., New York: Springer, 1992, vol. 3, pp. 2365–2383.Google Scholar
  42. 42.
    Oyaizu-Masuchi, Y. and Komagata, K., Isolation of Free-living Nitrogen-fixing Bacteria from the Rhizosphere of Rice, J. Gen. Appl. Microbiol., 1988, vol. 34, pp. 127–164.Google Scholar
  43. 43.
    Holland, M.A. and Polacco, J.C., Urease-Null and Hydrogenase-Null Phenotypes of a Phylloplane Bacterium Reveal Altered Nickel Metabolism in Two Soybean Mutants, Plant Physiol., 1992, vol. 98, pp. 942–948.Google Scholar
  44. 44.
    Kulaeva, O.N., Dependence of the Physiological Activity of Cytokinins on Their Chemical Structure, Tsitokininy: ikh struktura i funktsiya (Cytokinins: Structure and Function), Moscow: Nauka, 1973, pp. 32–76.Google Scholar
  45. 45.
    Miller, C., Skoog, F., Okumura, F., Saltza, M., and von Strong, F., Isolation, Structure, and Synthesis of Kinetin, a Substance Promoting Cell Division, J. Am. Chem. Soc., 1956, vol. 78, p. 1375.Google Scholar
  46. 46.
    Skoog, F. and Miller, C.O., Chemical Regulation of Growth and Organ Formation in Plant Tissues In Vitro, The Biological Action of Growth Substances, Symp. Soc. Exp. Biol., Cambridge: Cambridge Univ., 1957, vol. 11, pp. 118–131.Google Scholar
  47. 47.
    Kulaeva, O.N. and Chailakhyan, M.Kh., Advances and Prospects in the Investigation of Hormones, Proc. XI Int. Conf. on Growth Substances, Agrokhimiya, 1984, vol. 90, no. 1, pp. 106–128.Google Scholar
  48. 48.
    Mokronosov, A.T., The Integration of Growth and Photosynthesis, Fiziol. Rast., 1983, vol. 30, no. 5, pp. 868–880.Google Scholar
  49. 49.
    Kulaeva, O.N., The Hormonal Regulation of Physiological Processes in Plants at the Level of RNA and Protein Syntheses, XLI Timiryazevskie chteniya (The 41st Timiryazev Readings), Moscow: Nauka, 1982, p. 82.Google Scholar
  50. 50.
    Chernyad'ev, I.I., Photosynthesis and Cytokinins, Prikl. Biokhim. Mikrobiol., 1993, vol. 29, no. 5, pp. 644–674.Google Scholar
  51. 51.
    Chen, C.-M., Cytokinin Biosynthesis and Interconversion, Physiol. Plantarum, 1997, vol. 101, pp. 665–673.Google Scholar
  52. 52.
    Morris, R.O., Genes Specifying Auxin and Cytokinin Biosynthesis in Prokaryotes, Plant Hormones, Davies, P.J., Ed., Kluwer Academic, 1995, pp. 318–339.Google Scholar
  53. 53.
    Astot, C., Dolezal, K., Nordstrom, A., Wang, Q., Kunkel, T., Moritz, T., Chua, N.-H., and Sandberg, G., An Alternative Cytokinin Biosynthesis Pathway, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 26, pp. 14778–14783.Google Scholar
  54. 54.
    Long, R.D., Curtin, T.F., and Cassells, A.C., An Investigation of the Effects of Bacterial Contaminants on Potato Nodal Cultures, Acta Hortic., 1996, vol. 225, pp. 83–91.Google Scholar
  55. 55.
    Long, R., Morris, R., and Polacco, J., Cytokinin Production by Plant-associated Methylotrophic Bacteria, Am. Soc. Plant Physiol., 1997, Abstr. no. 1168.Google Scholar
  56. 56.
    Ivanova, E.G., Doronina, N.V., Shepelyakovskaya, A.O., Laman, A.G., Brovko, F.A., and Trotsenko, Yu.A., Facultative and Obligate Aerobic Methylobacteria Synthesize Cytokinins, Mikrobiologiya, 2000, vol. 69, no. 6, pp. 764–769.Google Scholar
  57. 57.
    Akiyoshi, D.E., Regier, D.A., Jen, G., and Gordon, M.P., Cytokinin Production by Agrobacterium and Pseudomonas spp., J. Bacteriol., 1987, vol. 169, no. 9, pp. 4242–4248.Google Scholar
  58. 58.
    Powell, G.K. and Morris, R.O., Nucleotide Sequence and Expression of a Pseudomonas savastanoi Cytokinin Biosynthetic Gene: Homology with Agrobacterium tumefaciens tmr and tzs Loci, Nucleic Acids Res., 1986, vol. 14, no. 6, pp. 2555–2565.Google Scholar
  59. 59.
    Shepelyakovskaya, A.O., Doronina, N.V., Laman, A.G., Brovko, F.A., and Trotsenko, Yu.A., New Data on the Ability of Aerobic Methylotrophic Bacteria to Synthesize Cytokinins, Dokl. Akad. Nauk, 1999, vol. 368, no. 4, pp. 555–557.Google Scholar
  60. 60.
    Holland, M.A., Occam's Razor Applied to Hormonology: Are Cytokinins Produced by Plants?, Plant Physiol., 1997, vol. 115, no. 3, pp. 865–868.Google Scholar
  61. 61.
    Muromtsev, G.S., Chkanikov, D.I., Kulaeva, O.N., and Hamburg, K.Z., The Hormonal Regulation of Physiological Processes in Flowering Plants, Osnovy khimicheskoi regulyatsii rosta i productivnosti rastenii (Basic Principles of the Chemical Regulation of Plant Growth and Productivity), Moscow: Agropromizdat, 1987, pp. 80–133.Google Scholar
  62. 62.
    Fett, W.F., Osman, S.F., and Dunn, M.F., Auxin Production by Plant-Pathogenic Pseudomonas and Xanthomonas, Appl. Environ. Microbiol., 1987, vol. 53, pp. 1839–1845.Google Scholar
  63. 63.
    Libbert, E., Wichner, S., Schiewer, U., Risch, H., and Kaiser, W., The Influence of Epiphytic Bacteria on Auxin Metabolism, Planta, 1966, vol. 68, pp. 327–334.Google Scholar
  64. 64.
    Doronina, N.V., Darmaeva, Ts.D., and Trotsenko, Yu.A., Novel Aerobic Methylotrophic Isolates from the Southern Transbaikal Soda Lakes, Mikrobiologiya, 2001, vol. 70, no. 3, pp. 386–392.Google Scholar
  65. 65.
    Ivanova, E.G., Doronina, N.V., and Trotsenko, Yu.A., Aerobic Methylobacteria Synthesize Auxins, Mikrobiologiya, 2001, vol. 70, no. 4.Google Scholar
  66. 66.
    Sharma, P.K. and Chakhal, V.P., The Effect of Amino Group Acceptors on the Synthesis of Indole-3-Acetic Acid from Tryptophan, Mikrobiologiya, 1986, vol. 55, no. 6, pp. 1041–1043.Google Scholar
  67. 67.
    Mordukhova, E.A., Skvortsova, N.P., Kochetkov, V.V., Dubeikovskii, A.N., and Boronin, A.M., Synthesis of the Phytohormone Indole-3-Acetic Acid by Rhizosphere Bacteria of the Genus Pseudomonas, Mikrobiologiya, 1991, vol. 60, no. 3, pp. 494–499.Google Scholar
  68. 68.
    Schneider, E.A. and Wightman, F., Metabolism of Auxin in Higher Plants, Annu. Rev. Plant Physiol., 1974, vol. 25, pp. 487–513.Google Scholar
  69. 69.
    Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Van Onckelen, H., Azospirillum brasilense Indole-3-Acetic Acid Biosynthesis: Evidence for a Tryptophan-Independent Pathway, Mol. Plant–Microbe Interact., 1993, vol. 6, pp. 609–615.Google Scholar
  70. 70.
    Steenhoudt, O. and Vanderleyden, J., Azospirillum, a Free-living Nitrogen-fixing Bacterium Closely Associated with Grasses: Genetic, Biochemical, and Ecological Aspects, FEMS Microbiol. Rev., vol. 24, pp. 487–506.Google Scholar
  71. 71.
    Costacurta, A. and Vanderleyden, J., Synthesis of Phytohormones by Plant-associated Bacteria, Crit. Rev. Microbiol., 1995, vol. 21, pp. 1–18.Google Scholar
  72. 72.
    Oberhansli, T., Defago, G., and Haas, D., Indole-3-Acetic Acid (IAA) Synthesis in the Biocontrol Strain CHAO of Pseudomonas fluorescens: Role of Tryptophan Side-Chain Oxidase, J. Gen. Microbiol., 1991, vol. 137, pp. 2273–2279.Google Scholar
  73. 73.
    Toraya, T., Yongsmith, B., Tanaka, A., and Fukui, S., Vitamin B12 Production by a Methanol-utilizing Bacterium, Appl. Microbiol., 1975, vol. 30, pp. 477–479.Google Scholar
  74. 74.
    Kretovich, V.L., Vvedenie v enzimologiyu (Introduction to Enzymology), Moscow: Nauka, 1974, pp. 97–98.Google Scholar
  75. 75.
    Poston, J.M., Leucine 2,3-Aminomutase: a Cobalamin-Dependent Enzyme Present in Bean Seedlings, Science, 1977, vol. 195, pp. 301–302.Google Scholar
  76. 76.
    Poston, J.M., Coenzyme B12-Dependent Enzymes in Potatoes: Leucine 2,3-Aminomutase and Methylmalonyl-CoA Mutase, Phytochemistry, 1978, vol. 17, pp. 401–402.Google Scholar
  77. 77.
    Robinson, T., The Organic Constituents of Higher Plants, Amherst (Massachusetts): Cordus, 1983, pp. 77–79.Google Scholar
  78. 78.
    Spiess, L.D., Lippincott, B.B., and Lippincott, J.A., Effect of Hormones and Vitamin B12 on Gametophore Development in the Moss Pylaisiella selwynii, Am. J. Bot., 1973, vol. 60, pp. 708–716.Google Scholar
  79. 79.
    Basile, D.V., Basile, M.R., Li, Q.-Y., and Corpe, W.A., Vitamin B12-stimulated Growth and Development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae), Bryologist, 1985, vol. 88, no. 2, pp. 77–81.Google Scholar
  80. 80.
    Large, P.J. and Bamforth, C.W., Methylotrophy and Biotechnology, London: Longman, 1988, pp. 222–227.Google Scholar
  81. 81.
    Oleskin, A.V., Botvinko, I.V., and Tsavkelova, E.A., Colonial Organization and Intercellular Communication in Microorganisms, Mikrobiologiya, 2000, vol. 69, no. 3, pp. 309–327.Google Scholar
  82. 82.
    Doronina, N.V., Sakharovskii, V.G., Drachuk, S.V., and Trotsenko, Yu.A., Organic Osmoprotectants in Aerobic Moderately Halophilic Methylobacteria, Mikrobiologiya, 1998, vol. 67, no. 4, pp. 458–463.Google Scholar
  83. 83.
    Khmelenina, V.N., Kalyuzhnaya, M.G., Sakharovsky, V.G., Suzina, N.E., Trotsenko, Y.A., and Gottschalk, G., Osmoadaptation in Halophilic and Alkaliphilic Methanotrophs, Arch. Microbiol., 1999, vol. 172, no. 5, pp. 321–329.Google Scholar
  84. 84.
    Khmelenina, N.V., Sakharovskii, V.G., Reshetnikov, A.S., and Trotsenko, Yu.A., Synthesis of Osmoprotectants in Halophilic and Alkaliphilic Methanotrophs, Mikrobiologiya, 2000, vol. 69, no. 4, pp. 465–470.Google Scholar
  85. 85.
    Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., and Shinmyo, A., Ectoine, the Compatible Solute of Halomonas elongata, Confers Hyperosmotic Tolerance upon Cultured Tobacco Cells, Plant Physiol., 2000, vol. 122, no. 4, pp. 1239–1247.Google Scholar
  86. 86.
    Newton, S.S. and Duman, J.G., An Osmotin-Like Cryoprotective Protein from the Bittersweet Nightshade Solanum dulcamara, Plant Mol. Biol., 2000, vol. 44, no. 5, pp. 581–589.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • Yu. A. Trotsenko
    • 1
  • E. G. Ivanova
    • 1
  • N. V. Doronina
    • 1
  1. 1.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations