, Volume 463, Issue 1–3, pp 171–184 | Cite as

Tubifex tubifex as a link in food chain transfer of hexachlorobenzene from contaminated sediment to fish

  • Philipp Egeler
  • Michael Meller
  • Joerg Roembke
  • Peter Spoerlein
  • Bruno Streit
  • Roland Nagel


Sediments contaminated with poorly water-soluble organic chemicals pose a risk to aquatic food chains. Sediment-associated chemicals can be accumulated by endobenthic, sediment-ingesting invertebrates. Some tubificid species – or other benthic annelids – serve as food for benthivorous fish, which thereby ingest the sediment-borne chemicals and may accumulate contaminant concentrations far higher than from water exposure only, and transfer them to organisms of higher trophic levels. For measurement of biomagnification, a sediment based food chain was developed and established in the laboratory. The two-step food chain included the sediment-dwelling freshwater oligochaete Tubifex tubifex (Müller) as a representative species of benthic infauna. The three-spined stickleback (Gasterosteus aculeatus, Linné), a small teleost fish which often feeds primarily on benthic invertebrates, served as a model predator. Spiked artificial sediment and reconstituted water as the overlying medium were used. Experiments were performed using 14C-labelled hexachlorobenzene, a hydrophobic pollutant as a model compound. To examine the influence of benthic prey on the bioaccumulation of the test substance in the predator, fish were exposed to spiked water, spiked sediment, pre-contaminated prey organisms, or combinations of these exposure routes. The results of these experiments indicate that for hexachlorobenzene, the presence of contaminated Tubifex tubifex as a food source in combined exposure leads to significantly higher accumulation in fish than exposure to single pathways.

tubificids sediment bioaccumulation food chain hexachlorobenzene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allner, B., 1997. Toxikokinetik von 3,4-Dichloranilin beim dreistachligen Stichling (Gasterosteus aculeatus) unter besonderer Berücksichtigung der Fortpflanzungsphysiologie. Ph. D. Thesis, Johannes Gutenberg-University, Mainz, Germany: 137 pp.Google Scholar
  2. Arnoult, J., 1986. Gasterosteidae. In Daget, J., J.-P. Gosse & D. F. E. Thys van den Audenaerde (eds), Check-list of the Freshwater Fishes of Africa (CLOFFA). ISNB, Brussels; MRAC, Tervuren; and ORSTOM, Paris. Vol. 2.: 280 pp.Google Scholar
  3. ASTM, 1988. Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. American Society for Testing and Materials, E 729-88a: 20 pp.Google Scholar
  4. ASTM, 2000. Standard guide for determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates. American Society for Testing and Materials, E 1688-00a: 54 pp.Google Scholar
  5. Beek, B., S. Boehling, U. Bruckmann, C. Franke, U. Joehncke & G. Studinger, 2000. The assessment of bioaccumulation. In Hutzinger, O. (ed.), The Handbook of Environmental Chemistry, Vol. 2 Part J (Vol. ed.: B. Beek): Bioaccumulation – New Aspects and Developments. Springer-Verlag, Berlin: 235–276.Google Scholar
  6. Berglund, O., P. Larsson, G. Ewald & L. Okla, 2000. Bioaccumulation and differential partitioning of polychlorinated biphenyls in freshwater, planctonic foodwebs. Can. J. Fish. aquat. Sci. 57: 1160–1168.Google Scholar
  7. Biddinger, G. R. & S. P. Gloss, 1984. The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems. Residue Reviews 91: 103–145.PubMedGoogle Scholar
  8. Bouché, M.-L., F. Habets, S. Biagianti-Risbourg & G. Vernet, 2000. Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotox. Environ. Safe. 46. 246–251.Google Scholar
  9. BUA, 1994. Hexachlorbenzol. BUA-Stoffbericht 119. Hrsg.: Beratergremium für umweltrelevante Altstoffe (BUA) der Gesellschaft Deutscher Chemiker. Hirzel, Wissenschaftliche Verlagsgesellschaft, Stuttgart: 294 pp.Google Scholar
  10. Campfens, J. & D. Mackay, 1997. Fugacity-based model of PCB bioaccumulation in complex aquatic foodwebs. Environ. Sci. Technol. 31: 577–583Google Scholar
  11. CEPA, 1993. Canadian Environmental Protection Act. Priority substances list assessment report: Hexachlorobenzene. Canada Communication Group-Publishing, Ottawa, Canada, 52 pp.Google Scholar
  12. Chen, W., A. T. Kan, G. Fu & M. B. Tomson, 2000. Factors affecting the release of hydrophobic organic contaminants from natural sediments. Environ. Toxicol. Chem. 19: 2401–2408.Google Scholar
  13. Clements, W. H., J. T. Oris & T. E. Wissing, 1994. Accumulation and food chain transfer of fluoranthene and benzo[a]pyrene in Chironomus riparius and Lepomis macrochirus. Arch. Environ. Contam. Toxicol. 26: 261–266.Google Scholar
  14. Connell, D.W., M. Bowman & D.W. Hawker, 1988. Bioconcentration of chlorinated hydrocarbons from sediment by oligochaetes. Ecotox. Environ. Saf. 16: 293–302.Google Scholar
  15. De Boer, J., F. Smedes, D. Wells & A. Allan, 1999. Report on the QUASH interlaboratory study on the determination of totallipid in fish and shellfish. Round 1 SBT-2. Exercise 1000. EU, Standards, Measurement and Testing Programme: 20 pp.Google Scholar
  16. De Bruijn, J., F. Busser, W. Seinen & J. Hermens, 1989. Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the 'slow-stirring’ method. Environ. Toxicol. Chem. 8: 499–512.Google Scholar
  17. DIN, 1985. DIN No. 38 414. Schlamm und Sedimente (Gruppe S), Teil 2: Bestimmung des Wassergehaltes und des Trockenrückstandes bzw. der Trockensubstanz (S2). Teil 3: Bestimmung des Glührückstandes und des Glühverlustes der Trockenmasse eines Schlammes (S3). In Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker (GDCh) (eds), Deutsche Einheitsverfahren (DEV) zur Wasser-, Abwasser-und Schlammuntersuchung. VCH, Weinheim, New York: 12 pp.Google Scholar
  18. DiPinto, L. M. & B. C. Coull, 1997. Trophic transfer of sedimentassociated polychlorinated biphenyls from meiobenthos to bottom-feeding fish. Environ. Toxicol. Chem. 16: 2568–2575.Google Scholar
  19. DiToro, D. M., C. S. Zarba, D. J. Hansen, W. J. Berry, R. C. Swartz, C. E. Cowan, S. P. Pavlou, S. E. Allen, N. A. Thomas & P. R. Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 10: 1541–1583.Google Scholar
  20. EC, 1996. Technical Guidance Documents in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances. Office for Official Publications of the EC (European Commission), Luxembourg; Part I – IV, 739 pp.Google Scholar
  21. Egeler, Ph., J. Roembke, M. Meller, Th. Knacker, C. Franke, G. Studinger & R. Nagel, 1997. Bioaccumulation of lindane and hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardised laboratory conditions. Chemosphere 35: 835–852.CrossRefGoogle Scholar
  22. Ekelund, R., Å. Bergman, Å. Granmo & M. Berggren, 1990. Bioaccumulation of 4-nonylphenol in marine animals – a reevaluation. Environ. Pollut. 64: 107–120.PubMedGoogle Scholar
  23. Environment Canada, 1990. Biological Test Method: Acute Lethality Test using the Threespine Stickleback (Gasterosteus aculeatus). Environmental Protection Series. Report EPS 1/RM/10: 45 pp.Google Scholar
  24. Fisk, A. T., R. J. Norstrom, C. D. Cymbalisty & D. C. G. Muir, 1998. Dietary accumulation and depuration of hydrophobic organochlorines: bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ. Toxicol. Chem. 17: 951–961.Google Scholar
  25. Froese, R. & D. Pauly (eds), 2000. FishBase 2000. World Wide Web electronic publication. www.fishbase.org, as modified Sept. 15, 2000.Google Scholar
  26. Gobas, F. A. P. C., 1993. A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food webs: application to Lake Ontario. Ecol. Model. 69: 1–17.Google Scholar
  27. Gobas, F. A. P. C., J. R. McCorquodale & G. D. Haffner, 1993. Intestinal absorption and biomagnification of organochlorines. Environ. Toxicol. Chem. 12: 567–576.Google Scholar
  28. Gobas, F. A. P. C., J. B. Wilcockson, R. W. Russel & D. D. Haffner, 1999. Mechanism of biomagnification in fishes under laboratory and field conditions. Environ. Sci. Technol. 33: 133–141.Google Scholar
  29. Holm, G., 1994. The three-spined stickleback in ecotoxicological test systems. Doctoral Dissertation, Stockholm University: 141 pp.Google Scholar
  30. Ingersoll, C. G., G. T. Ankley, D. A. Benoit, E. L. Brunson, G. A. Burton, F. J. Dwyer, R. A. Hoke, P. F. Landrum, T. J. Norberg-King & P. V. Winger, 1995. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: a review of methods and applications. Environ. Toxicol. Chem. 14: 1885–1894.Google Scholar
  31. Jepsen, R., S. Borglin, W. Lick & D. L. Swackhamer, 1995. Parameters affecting the adsorption of hexachlorobenzene to natural sediments. Environ. Toxicol. Chem. 14: 1487–1497.Google Scholar
  32. Karickhoff, S. W., 1981. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10: 833–846.Google Scholar
  33. Karickhoff, S. W. & K. R. Morris, 1985. Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ. Sci. Technol. 19: 51–56.Google Scholar
  34. Kolok, A. S, K. J. Groetsch & J. T. Oris, 1996. The role of water ventilation and sediment ingestion on the uptake of hexachlorobenzene by Gizzard Shad (Dorosoma cepedianum). Environ. Toxicol. Chem. 15: 1760–1762.Google Scholar
  35. Kosiorek, D., 1974. Development cycle of Tubifex tubifex Müll. in experimental culture. Pol. Arch. Hydrobiol. 21: 411–422.Google Scholar
  36. Kuehl, D. W., R. Haebler & C. Potter, 1991. Chemical residues in dolphins from the U.S. Atlantic coast including Atlantic Bottlenose obtained during the 1987/88 mass mortality. Chemosphere 22: 1071–1084.Google Scholar
  37. Landrum, P. F., S. R. Nihart, B. J. Eadie & L. R. Herche, 1987. Reduction in bioavailability of organic contaminants to the amphipod Pontoporeia hoyi by dissolved organic matter of sediment interstitial waters. Environ. Toxicol. Chem. 6: 11–20.Google Scholar
  38. Landrum, P. F. & S. W. Fisher, 1998. Influence of lipids on the bioaccumulation and trophic transfer of organic contaminants in aquatic organisms. In Arts, M. & B. Wainman (eds), Lipids in Freshwater Ecosystems. Springer-Verlag, New York: 203–234.Google Scholar
  39. Lores, E. M., J. M. Patrick & J. K. Summers, 1993. Humic acid effects on uptake of hexachlorobenzene and hexachlorobiphenyl by sheepshead minnows in static sediment/water systems. Environ. Toxicol. Chem. 12: 541–550.Google Scholar
  40. Mackay, D., 1991. Multimedia environmental models – The fugacity approach. Lewis Publishers, Inc., Chelsea, Michigan: 257 pp.Google Scholar
  41. Martinez–Madrid, M., P. Rodriguez, J. I. Perez–Iglesias & E. Navarro, 1999. Sediment toxicity bioassays for assessment of contaminated sites in the Nervion river (Northern Spain). 2. Tubifex tubifex (Müller) reproduction sediment bioassay. Ecotoxicology 8: 111–124.Google Scholar
  42. Masuda, H., K. Amaoka, C. Araga, T. Uyeno & T. Yoshino, 1984. The Fishes of the Japanese Archipelago. Vol. 1. Tokai University Press, Tokyo: 437 pp.Google Scholar
  43. Matisoff, G., X. Wang, & P. L. McCall, 1999. Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex. J. Great Lakes Res. 25: 205–209.Google Scholar
  44. Meller, M., Ph. Egeler, J. Roembke, H. Schallnass, R. Nagel & B. Streit, 1998. Short-term toxicity of lindane, hexachlorobenzene and copper sulfate to tubificid sludgeworms (Oligochaeta) in artificial media. Ecotox. Environ. Safe. 39: 10–20.Google Scholar
  45. Montgomery, J. H., 1993. Agrochemical Desk Reference: Environmental Data. Lewis Publishers, Boca Raton: 625 pp.Google Scholar
  46. Moore, D. R. J., R. L. Breton & K. Lloyd, 1997. The effects of hexachlorobenzene on mink in the Canadian environment: an ecological risk assessment. Environ. Toxicol. Chem. 16: 1042–1050.Google Scholar
  47. Morrison, H. A., F. A. P. C. Gobas, R. Lazar & G. D. Haffner, 1996. Development and verification of a bioaccumulation model for organic contaminants in benthic invertebrates. Environ. Sci. Technol. 30: 3377–3384.Google Scholar
  48. Muir, D., B. Braune, B. DeMarch, R. Norstrom, R. Wagemann, L. Lockhart, B. Hargrave, D. Bright, R. Addison, J. Payne, K. & Reimer, 1999. Spatial and temporal trends of contaminants in the Canadian Arctic marine ecosystem: a review. Sci. Total Environ. 230: 83–144.PubMedGoogle Scholar
  49. Neff, J.M., 1984. Bioaccumulation of organic micropollutants from sediments and suspended particles by aquatic animals. Fresenius Z. Anal. Chem. 319: 132–136.Google Scholar
  50. Nendza, M., T. Herbst, C. Kussatz & A. Gies, 1997. Potential for secondary poisoning and biomagnification in marine organisms. Chemosphere 35: 1875–1885.PubMedGoogle Scholar
  51. OECD, 1984. Guidelines for Testing of Chemicals No. 207. Earthworm, Acute Toxicity Test. Organisation for Economic Cooperation and Development (OECD), Paris: 9 pp.Google Scholar
  52. OECD, 1992. Guidelines for Testing of Chemicals No. 203. Fish, Acute Toxicity Test. OECD, Paris: 9 pp.Google Scholar
  53. OECD, 1996. Guidelines for Testing of Chemicals No. 305. Bioconcentration: Flow-through Fish Test. OECD, Paris: 23 pp.Google Scholar
  54. Oliver, B. G., 1984. Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. Can. J. Fish. aquat. Sci. 41: 878–883.Google Scholar
  55. Oliver, B. G., 1987. Biouptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Environ. Sci. Technol. 21: 785–790.Google Scholar
  56. Patrick, F. M. & M. Loutit, 1976. Passage of metals in effluents, through bacteria to higher organisms. Wat. Res. 10: 333–335.CrossRefGoogle Scholar
  57. Patrick, F. M. & M. Loutit, 1978. Passage of metals to freshwater fish from their food. Wat. Res. 12: 395–398.CrossRefGoogle Scholar
  58. Reynoldson, T. B., S. P. Thompson & J. L. Bamsey, 1991. A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex. Environ. Toxicol. Chem. 10: 1061–1072.Google Scholar
  59. Rinderhagen, M. & W. Butte, 1995. Kinetics of accumulation and elimination of isomeric hexachlorocyclohexanes by tubificids. SAS and QSAR in Environmental Research 4: 131–138.Google Scholar
  60. Rodriguez, P. & T. B. Reynoldson, 1999. Laboratory methods and criteria for sediment bioassessment. In Mudroch, A., J.M. Azcue & P. Mudroch (eds), Manual of Bioassessment of Aquatic Sediment Quality. Lewis Publishers/CRC Press LLC, Boca Raton: 83–133.Google Scholar
  61. Romijn, C. A. F. M., R. Luttik, D. Van de Meent, W. Slooff & J. H. Canton, 1993. Presentation of a General Algorithm to Include Effect Assessment on Secondary Poisoning in the Derivation of Environmental Quality Criteria. Part 1: Aquatic food chains. Ecotox. Environ. Safe. 26: 61-85.Google Scholar
  62. Russell, R. W., R. Lazar & D. G. Haffner, 1995. Biomagnification of organochlorines in Lake Erie white bass. Environ. Toxicol. Chem. 14: 719–724.Google Scholar
  63. Schuytema, G. S., D. F. Krawczyk, W. L. Griffis, A. V. Nebeker & M. L. Robideaux, 1988. Comparative uptake of hexachlorobenzene by fathead minnows, amphipods and oligochaete worms from water and sediment. Environ. Toxicol. Chem. 7: 1035–1045.Google Scholar
  64. Sijm, D. T. H. M. & J. L. M. Hermens, 2000. Internal effect concentration: link between bioaccumulation and ecotoxicity of organic chemicals. In Hutzinger, O. (ed.), The Handbook of Environmental Chemistry, Vol. 2 Part J (Vol. ed.: B. Beek), Bioaccumulation – New Aspects and Developments. Springer-Verlag Berlin Heidelberg: 167–200.Google Scholar
  65. Sterba, G., 1987. Süßwasserfische der Welt. Urania-Verlag Leipzig: 915 pp.Google Scholar
  66. Streit, B., 1998. Bioaccumulation of contaminants in fish. In Braunbeck, T., D. E. Hinton & B. Streit (eds), Fish Ecotoxicology. Birkhäuser Verlag Basel, Switzerland: 353–387.Google Scholar
  67. Taastrøm, H.-M. & L. Jacobsen, 1999. The diet of otters (Lutra lutra L.) in Danish freshwater habitats: comparisons of prey fish populations. J. Zool. Lond. 248: 1–13.Google Scholar
  68. Tchounwou, P. B., A. A. Abdelghani, Y. V. Pramar & L. R. Heyer, 1998. Health risk assessment of hexachlorobenzene and hexachlorobutadiene residues in fish collected from a hazardous waste contaminated wetland in Louisiana, U.S.A. In Little, E. E., A. J. DeLonay & B. M. Greenberg (eds), Environmental Toxicology and Risk Assessment 7. ASTM STP 1333: 368–382.Google Scholar
  69. Thiel, R., T. Mehner, B. Koepcke & R. Kafemann, 1996. Diet niche relationship among early life stages of fish in German estuaries. Mar. Freshwat. Res. 47: 123–136.Google Scholar
  70. U.S. EPA, 1999. AQUIRE (Aquatic Toxicity Information Retrieval). In U.S. EPA, ECOTOX (Ecotoxicology Database System). Last updated May 1999. Website: http://www.epa.gov/eco-tox.Google Scholar
  71. U.S. EPA, 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. Second Edition. EPA 600/R-99/064, U.S. Environmental Protection Agency, Duluth, March 2000: 192 pp.Google Scholar
  72. Van den Dikkenberg R. P., H. H. Canton, L. A. M. Mathijssen–Spiekman & C. J. Roghair, 1989. The usefulness of Gasterosteus aculeatus – the three-spined stickleback – as a test organism in routine toxicity testing. Report No. 718625003, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands: 22 pp.Google Scholar
  73. Weinstein, J. E. & J. T. Oris, 1999. Humic acids reduce the bioaccumulation and phototoxicity of fluoroanthene to fish. Environ. Toxicol. Chem. 18: 2087–2094.Google Scholar
  74. Wootton, R. J., 1984. A Functional Biology of Sticklebacks. Functional Biology Series. Croom Helm, London & Sydney: 265 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Philipp Egeler
    • 1
  • Michael Meller
    • 2
  • Joerg Roembke
    • 2
  • Peter Spoerlein
    • 2
  • Bruno Streit
    • 3
  • Roland Nagel
    • 4
  1. 1.ECT Oekotoxikologie GmbHFloersheim/MainGermany
  2. 2.ECT Oekotoxikologie GmbHFloersheim/MainGermany
  3. 3.Johann-Wolfgang-Goethe-UniversityFrankfurt/MainGermany
  4. 4.Dresden University of TechnologyDresdenGermany

Personalised recommendations