Skip to main content
Log in

Pattern formation in embryos of the oligochaete annelid Tubifex: cellular basis for segmentation and specification of segmental identity

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The embryonic origin of metameric segmentation was examined in the oligochaete Tubifex using lineage tracers. Segments in Tubifex embryos arise from five bilateral pairs of longitudinal coherent columns (bandlets) of primary blast cells which are generated by five bilateral pairs of embryonic stem cells called teloblasts (M, N, O, P and Q). As development proceeds, an initially linear array of blast cells in each ectodermal bandlet gradually changes its shape in a lineage-specific manner. These morphogenetic changes result in the formation of distinct cell clumps, which are separated from the bandlet to serve as segmental elements (SEs). SEs in the N and Q lineages are each comprised of clones of two consecutive primary blast cells. In contrast, in the O and P lineages, individual blast cell clones are distributed across SE boundaries; each SE is a mixture of a part of the preceding anterior clone and a part of the next posterior clone. Morphogenetic events, including segmentation, in an ectodermal bandlet proceed normally in the absence of neighboring ectodermal bandlets. Without the underlying mesoderm, separated SEs fail to space themselves at regular intervals along the anteroposterior axis. It is suggested that ectodermal segmentation in Tubifex consists of two stages; autonomous morphogenesis of each bandlet leading to generation of SEs, and the ensuing mesoderm-dependent alignment of separated SEs. In contrast, metameric segmentation in the mesoderm (M lineage) is a one-step process in that it arises from an initially simple organization (i.e. a linear series) of primary m-blast cells, which individually serve as a founder cell of each segment. The boundary between mesodermal segments is determined autonomously. The results of a set of cell ablation and transplantation experiments, using alkaline phosphatase activity as a biochemical marker for segments VII and VIII suggest that segmental identities in primary m-blast cells are determined according to the genealogical position in the M lineage and that the M teloblast possesses a developmental program through which the sequence of blast cell identities is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, A., A. Nakamoto & T. Shimizu, 2001. Specification of cell fates of ectoteloblast lineages in embryos of the oligochaete annelid Tubifex: involvement of novel cell–cell interactions. Development 128: 1211–1219.

    PubMed  Google Scholar 

  • Blair, S. S., 1982. Interactions between mesoderm and ectoderm in segment formation in the embryo of a glossiphoniid leech. Dev. Biol. 89: 389–396.

    PubMed  Google Scholar 

  • Brusca, R. C & G. J. Brusca, 1990. Invertebrates. Sinauer, Sunderland.

  • Devries, J., 1973a. La formation et la destinée des feuillets embryonnaires chez le lombricien Eisenia foetida (Annélide Oligochète). Arch. Anat. Microsc. 62: 15–38.

    Google Scholar 

  • Devries, J., 1973b. Détermination précoce du développement embryonnaire chez le lombricien Eisenia foetida. Bull. Soc. Zool. Fr. 98: 405–417.

    Google Scholar 

  • Fernandez, F. & N. Olea, 1982. Embryonic development of glossiphoniid leeches. In Harrison, F. W. & R. R. Cowden (eds), Developmental Biology of Freshwater Invertebrates. Alan R. Liss, New York: 317–361.

    Google Scholar 

  • Gleizer, L. & G. S. Stent, 1993. Developmental origin of segmental identity in the leech mesoderm. Development 117: 177–189.

    PubMed  Google Scholar 

  • Goto, A., K. Kitamura & T. Shimizu, 1999a. Cell lineage analysis of pattern formation in the Tubifex embryo. I. Segmentation in the mesoderm. Int. J. Dev. Biol. 43: 317–327.

    PubMed  Google Scholar 

  • Goto, A., K. Kitamura, A. Arai & T. Shimizu, 1999b. Cell fate analysis of teloblasts in the Tubifex embryo by intracellular injection of HRP. Dev. Growth Differ. 41: 703–713.

    PubMed  Google Scholar 

  • Huang, F. Z. & D. A. Weisblat, 1996. Cell fate determination in an annelid equivalence group. Development 122: 1839–1847.

    PubMed  Google Scholar 

  • Kitamura, K. & T. Shimizu, 2000a. Embryonic expression of alkaline phosphatase activity in the oligochaete annelid Tubifex. Invert. Reprod. Dev. 37: 69–73.

    Google Scholar 

  • Kitamura, K. & T. Shimizu, 2000b. Analyses of segment-specific expression of alkaline phosphatase activity in the mesoderm of the oligochaete annelid Tubifex: implications for specification of segmental identity. Dev. Biol. 219: 214–228.

    PubMed  Google Scholar 

  • Meyer, A., 1929. Die Entwicklung der Nephridien und Gonoblasten bei Tubifex rivulorum Lam. nebst Bemerkungen zum natürlichen System der Oligochäten. Z. wiss. Zool. 133: 517–562.

    Google Scholar 

  • Nakamoto, A., A. Arai & T. Shimizu, 2000. Cell lineage analysis of pattern formation in the Tubifex embryo. II. Segmentation in the ectoderm. Int. J. Dev. Biol. 44: 797–805.

    PubMed  Google Scholar 

  • Penners, A., 1922. Die Furchung von Tubifex rivulorum Lam. Zool. Jb. Abt. Anat. Ontog. Tiere43: 323–367.

    Google Scholar 

  • Penners, A., 1924a. Die Entwicklung des Keimstreifs und die Organbildung bei Tubifex rivulorum Lam. Zool. Jb. Abt. Anat. Ontog. Tiere 45: 251–308.

    Google Scholar 

  • Penners, A., 1924b. Ñber die Entwicklung teilweise abgetöteter Eier von Tubifex rivulorum. Verh. dt. zool. Ges. 29: 69–73.

    Google Scholar 

  • Penners, A., 1926. Experimentelle Untersuchungen zum Determinationsproblem am Keim von Tubifex rivulorum Lam. II. Die Entwicklung teilweise abgetöteter Keime. Z. wiss. Zool. 127: 1–140.

    Google Scholar 

  • Penners, A., 1934. Experimentelle Untersuchungen zum Determinationsproblem am Keim von Tubifex rivulorum Lam. III. Abtötung der Teloblasten auf verschiedenen Entwicklungsstadien des Keimstreifs. Z. wiss. Zool. 145: 220–260.

    Google Scholar 

  • Shimizu, T., 1982. Development in the freshwater oligochaete Tubifex. In Harrison, F. W. & R. R. Cowden (eds), Developmental Biology of Freshwater Invertebrates. Alan R. Liss, New York: 283–316.

    Google Scholar 

  • Torrence, S. A. & D. K. Stuart, 1986. Gangliogenesis in leech embryos: Migration of neural precursor cells. J. Neurosci. 6: 2736–2746.

    PubMed  Google Scholar 

  • Weisblat, D. A. & M. Shankland, 1985. Cell lineage and segmentation in the leech. Phil. Trans. r. Soc., Lond. B312: 39–56.

    Google Scholar 

  • Weisblat, D. A., S. Y. Kim & G. S. Stent, 1984. Embryonic origin of cells in the leech Helobdella triserialis. Dev. Biol. 104: 65–85.

    PubMed  Google Scholar 

  • Weisblat, D. A., G. Harper, G. S. Stent & R. T. Sawyer, 1980. Embryonic cell lineages in the nervous system of the glossiphoniid leech Helobdella triserialis. Dev. Biol. 76: 58–78.

    PubMed  Google Scholar 

  • Wilson, E. B., 1889. The embryology of the earthworm.J. Morph. 3: 387–462.

    Google Scholar 

  • Zackson, S. L., 1982. Cell clones and segmentation in leech development. Cell 31: 761–770.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, T., Kitamura, K., Arai, A. et al. Pattern formation in embryos of the oligochaete annelid Tubifex: cellular basis for segmentation and specification of segmental identity. Hydrobiologia 463, 123–131 (2001). https://doi.org/10.1023/A:1013147523271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013147523271

Navigation