Skip to main content
Log in

A New Generalized Four-Parameter Corresponding-States Method for Predicting Volumetric Behavior of Working Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new four-parameter corresponding-states method is presented to correlate the generalized volumetric behavior of polar and nonpolar working fluids. It is different from other corresponding-states methods in that the acentric factor is not used, instead the normal boiling temperature and critical compressibility factor are introduced as basic parameters. Comparison between experimental and calculated volumetric properties shows that highly accurate results are obtained by the new method for 18 polar and nonpolar working fluids with 3900 experimental data. The overall average absolute error for all of the fluids studied is about 0.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Z. S. Chen, W. L. Cheng, and P. Hu, J. Eng. Thermophys. 22:19 (2001) [in Chinese].

    Google Scholar 

  2. Z. S. Chen and T. Ito, Proc. 5th Asia Thermophys. Prop. Conf., Seoul (1998), p. 321.

  3. Z. S. Chen, and T. Ito, Proc. 5th Asia Thermophys. Prop. Conf., Seoul (1998), p. 519.

  4. K. S. Pitzer, D. Z. Lippmann, R. F. Curl, C. M. Huggins, and D. E. Petersen, J. Am. Chem. Soc. 77:3433 (1955).

    Google Scholar 

  5. B. I. Lee and M. G. Kesler, AIChE J. 21:510 (1975).

    Google Scholar 

  6. G. Z. Wu and L. I. Stiel, AIChE J. 31:1632 (1985).

    Google Scholar 

  7. W. V. Wilding and R. L. Rowley, Int. J. Thermophys. 7:525 (1986).

    Google Scholar 

  8. G. Scalabrin, S. D. Santo, and M. Grigiante, Proc. 5th Asia Thermophys. Prop. Conf., Seoul (1998), p. 325.

  9. K. Park, R. E. Sonntag, and C. Borgnakke, Int. J. Energy Res. 20:811 (1996).

    Google Scholar 

  10. T. Ito, R. Akasaka, T. Iwamoto, Y. Kato, T. Kuroki, T. Shigechi, Y. Takata, H. Tanigawa, H. Taniguchi, T. Hamatake, T. Fujita, T. Hoda, T. Masuoka, M. Miyamoto, S. Momoki, Y. Yasuda, T. Yamaguchi, H. Yamashita, and K. Yoshioka, A Program Package for Thermophysical Properties of Fluids, Version 11.1 (1999).

  11. Japan Soc. Mech. Eng., 1980 SI JSME Steam Tables (1981).

  12. K. Bühner, G. Maurer, and E. Bender, Cryogenics 21:157 (1981).

    Google Scholar 

  13. V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarny, Thermodynamic Properties of Oxygen, National Standard Reference Data of the USSR: A Series of Property Tables, Vol. 5 (Hemisphere, New York, 1987).

    Google Scholar 

  14. R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodyn. 24:413 (1992).

    Google Scholar 

  15. M. H. William, J. Chem. Eng. Data 28:367 (1983).

    Google Scholar 

  16. D. N. Giovanni, G. Giuliano, and P. Fabio, J. Chem. Eng. Data 44:696 (1999).

    Google Scholar 

  17. S. J. Boyes and L. A. Weber, Int. J. Thermophys. 15:443 (1994).

    Google Scholar 

  18. B. Walter, K. Gunther, and W. Rolf, J. Chem. Eng. Data 41:476 (1996).

    Google Scholar 

  19. Y. C. Hou and J. J. Martin, AIChE J. 5:125 (1959).

    Google Scholar 

  20. G. Handel, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 24:697 (1992).

    Google Scholar 

  21. A. Caustevo and S. Iglesias, J. Chem. Eng. Data 40:1151 (1995).

    Google Scholar 

  22. C.-C. Piao, H. Sato, and K. Watanabe, J. Chem. Eng. Data 36:398 (1991).

    Google Scholar 

  23. R. G. Rubio, J. C. G. Calado, P. Clancy, and W. N. Streett, J. Phys. Chem. 89:4637 (1985).

    Google Scholar 

  24. J. M. Martin, F. S. Richard, and N. S. Paul, J. Chem. Eng. Data, 23:113 (1978).

    Google Scholar 

  25. M. Prasad, J. Chem. Eng. Data 26:361 (1981).

    Google Scholar 

  26. M. Prasad and A. P. Kudchadker, J. Chem. Eng. Data 23:190 (1978).

    Google Scholar 

  27. Y. Maezawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 36:151 (1991).

    Google Scholar 

  28. Y. Maezawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 36:148 (1991).

    Google Scholar 

  29. N. Yada, T. Kumatsu, H. Sato, and K. Watanabe, J. Chem. Eng. Data 36:12 (1991).

    Google Scholar 

  30. L. A. Weber and D. R. Defibaugh, J. Chem. Eng. Data 41:1477 (1996).

    Google Scholar 

  31. H.L. Zhang, H. Sato, and K. Watanabe, J. Chem. Eng. Data 40:887 (1995).

    Google Scholar 

  32. H. Hou, J. C. Holste, B. E. Gammon, and K. N. Marsh, Int. J. Refrig. 15:365 (1992).

    Google Scholar 

  33. C.-C Piao, H. Sato, and K. Watanabe, ASHRAE Trans. 96: 132 (1990), Part 1.

    Google Scholar 

  34. D. P. Wilson and R. S. Basu, ASHRAE Trans. 94:2095 (1988), Part 2.

    Google Scholar 

  35. N. Pieperbeck, R. Kleinrahm, W. Wagner, and M. Jaeschke, J. Chem. Thermodyn. 23:175 (1991).

    Google Scholar 

  36. R. Kleinrahm, W. Duschek, and W. Wagner, J. Chem. Thermodyn. 20:621 (1988).

    Google Scholar 

  37. G. Handel, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 24: 685 (1992).

    Google Scholar 

  38. D. R. Defibaugh, K. A. Gillis, M. R. Moldover, J. W. Schmidt, and L. A. Weber, Int. J. Refrig. 19:285 (1996).

    Google Scholar 

  39. C. C. Hsu and J. J. Mcketta, J. Chem. Eng. Data 9:45 (1964).

    Google Scholar 

  40. B. Platzer, A. Polt, and G. Maurer, Thermophysical Properties of Refrigerants (Springer-Verlag, New York, 1990).

    Google Scholar 

  41. Jpn. Assoc. Refrig., Thermophysical Properties of Refrigerants (R22, Chlorodifluoromethane) (1975)

  42. S. Angus and K. M. de Reuck, International Thermodynamic Table of the Fluid State-5 Methane, Vol. 5 (IUPAC, 1976).

  43. R. Tillner-Roth, J. Li, A. Yokozeki, H. Sato, and K. Watanabe, Thermodynamic Properties of Pure and Blended Hydrofluorocarbon (HFC) Refrigerants (JSRAE, Tokyo, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W.L., Chen, Z.S., Hu, P. et al. A New Generalized Four-Parameter Corresponding-States Method for Predicting Volumetric Behavior of Working Fluids. International Journal of Thermophysics 22, 1769–1779 (2001). https://doi.org/10.1023/A:1013143101294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013143101294

Navigation