Skip to main content
Log in

Theory of Ostwald ripening invoking Taylor analyticity and a Le Chatelier stability principle

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As an alternative to a variety of algorithms, and particularly to the much-favoured Lifshitz-Slyozov-Wagner (LSW) mathematical method of regularization of a coarsening precipitate manifold to hydrodynamic continuity controlled locally by quasi-steady state volume diffusion, we have reformulated the asymptotic, terminally discrete time-dependent particle radius distribution function f so as to be consistent with an even Taylor expanded free energy density. This consistency is necessitated by statistical isotropy in a coarse-grained phase space, a condition violated by the LSW continuity condition. Stability is demonstrated through the application of a closely related Le Chatelier Principle which also appeared in the LS formulation. Wagner's equivalent was to assume separability of variables as a scaling postulate. The coefficients in our analytic distribution function and the appropriate order parameter are established through Wagner's quadratic limit as the radius goes to zero and the requirement that the largest particle which terminates the stable distribution must also have the maximal surface velocity. Our smoothed asymptotic particle radius distribution function generates the standard t 1/3 scaling but is sufficiently different than that of LSW and its generalizations as to be easily distinguishable experimentally. Indeed, the experimental distribution functions are demonstrated to strongly favour the present formulation. Since the explicit volume fraction of particles ϕ does not enter into our treatment and the statistical mean distance between particles goes as (1 − ϕ)1/3, the onset of functional violations due to diffusion impingement should only occur as ϕ exceeds 0.3, again in accord with many experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. GREENWOOD, Acta Met. 4 (1956) 243.

    Google Scholar 

  2. S.-K. CHAN, Ber. Bunsenges. Phys. Chem. 84 (1980) 745.

    Google Scholar 

  3. P. W. VOORHEES and M. E. GLICKSMAN, 32 (1984) 2001.

  4. J. H. YAO, K. R. ELDER, H. GUO and M. GRANT, Phys. Rev. B45 (1992) 8173.

    Google Scholar 

  5. A. BHAKTA and E. RUCKENSTEIN, J. Chem. Phys. 103 (1995) 7120.

    Google Scholar 

  6. I. M. LIFSHITZ and Y. Y. SLYOZOV, J. Phys. Chem. Solid 19 (1961) 35.

    Google Scholar 

  7. C. WAGNER, J. Elektrochem. 65 (1961) 581.

    Google Scholar 

  8. T. KÜPPER and N. MASBAUM, Acta Met. et Mat. 42 (1994) 1847.

    Google Scholar 

  9. S. M. ALLEN and J. W. CAHN, Acta Met. 27 (1979) 1085.

    Google Scholar 

  10. J. S. KIRKALDY, Scripta Mat. 38 (1997) 125.

    Google Scholar 

  11. N. P. LOUAT, Acta Met. 22 (1974) 721.

    Google Scholar 

  12. J. W. CAHN, ibid. 9 (1961) 795.

    Google Scholar 

  13. W. W. MULLINS, J. Appl. Phys. 59 (1986) 1341.

    Google Scholar 

  14. Idem., Acta Met. et Mat. 39 (1991) 2081.

    Google Scholar 

  15. M. HILLERT, Acta Met. 13 (1965) 227.

    Google Scholar 

  16. S. R. DEGROOT, “Thermodynamics of Irreversible Processes” (North-Holland, Amsterdam, 1952).

    Google Scholar 

  17. I. PRIGOGINE, “Thermodynamics of Irreversible Processes” (Charles C. Thomas, Springfield, IL, 1955).

    Google Scholar 

  18. M. KAHLWEIT, Adv. Colloid Interface Sci. 5 (1975) 1.

    Google Scholar 

  19. C. ZENER, Trans. AIME 167 (1946) 550.

    Google Scholar 

  20. R. A. ORIANI, Acta Met. 14 (1966) 84.

    Google Scholar 

  21. L. R. CORNWELL, J. D. EMBURY and G. R. PURDY, Scripta Met. 4 (1970) 973.

    Google Scholar 

  22. H. COOK, Acta Met. 18 (1970) 297.

    Google Scholar 

  23. T. M. ROGERS, K. R. ELDER and C. R. DESAI, Phys. Rev. B37 (1988) 9638.

    Google Scholar 

  24. V. L. GINZBURG and L. D. LANDAU, JETP 20 (1950) 1064.

    Google Scholar 

  25. J. S. KIRKALDY, Reps. Prog. Phys. 55 (1992) 723.

    Google Scholar 

  26. J. E. TAYLOR, in “Mathematics of Structure Evolution,” edited by L.-Q. Chen et al. (TMS, Warrendale, PA, 1977) p. 135.

    Google Scholar 

  27. W. C. CARTER, J. E. TAYLOR and J. W. CAHN, JOM (1997).

  28. L. ONSAGER, Phys. Rev. 38 (1931) 2265.

    Google Scholar 

  29. R. KIKUCHI, Ann. Phys. 10 (1960) 127.

    Google Scholar 

  30. J. S. KIRKALDY, Phys. Rev. B30 (1984) 30.

    Google Scholar 

  31. Idem., Met. Trans. A 16 (1985) 1781.

  32. O. PENROSE and P. C. FIFE, Physica D 43 (1990).

  33. M. KAHLWEIT, Z. Phys. Chem. 36 (1963) 292.

    Google Scholar 

  34. N. AKAIWA and P. W. VOORHEES, Phys. Rev. E 49 (1994) 3860.

    Google Scholar 

  35. A. J. ARDELL, Scripta Met. et Mat. 24 (1990) 343.

    Google Scholar 

  36. A. J. ARDELL and R. B. NICHOLSON, J. Phys. Chem. Solids 27 (1966) 1793.

    Google Scholar 

  37. P. W. VOORHEES and R. J. SCHAEFER, Acta Met. 35 (1987) 327.

    Google Scholar 

  38. E. M. LIFSHITZ and L. P. PITAEVSKII, “Statistical Physics, Part II” (Pergamon, Oxford, 1980) p. 182.

    Google Scholar 

  39. R. WAGNER and R. KAMPMANN, in “Materials Science and Technology,” edited by R. W. Cahn, P. Haasen and E. J. Kramer (VCH, Weinheim, Germany, 1991) p. 405. Received 14 March and accepted 18 September 2001 70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkaldy, J.S. Theory of Ostwald ripening invoking Taylor analyticity and a Le Chatelier stability principle. Journal of Materials Science 37, 65–70 (2002). https://doi.org/10.1023/A:1013137622856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013137622856

Keywords

Navigation