Skip to main content
Log in

Photoisomerization in Rhodopsin

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Khorana, H. G. (1992) J. Biol. Chem., 267, 1–4.

    Google Scholar 

  2. Hofmann, K.-P., and Helmreich, E. J. M. (1996) Biochim. Biophys. Acta, 1286, 285–322.

    Google Scholar 

  3. Sakmar, T. P. (1998) Prog. Nucleic Acid Res. Mol. Biol., 59, 1–33.

    Google Scholar 

  4. Shichida, Y., and Imai, H. (1998) CMLS, Cell. Mol. Life Sci., 54, 1299–1315.

    Google Scholar 

  5. Matsumoto, H., and Yoshizawa, T. (1975) Nature, 258, 523–526.

    Google Scholar 

  6. Yoshizawa, T., and Shichida, Y. (1982) Meth. Enzymol., 81, 333–354.

    Google Scholar 

  7. Shichida, Y. (1986) Photobiochem. Photobiophys., 13, 287–307.

    Google Scholar 

  8. Yoshizawa, T., and Kandori, H. (1992) in Progress in Retinal Research (Osborne, N., and Chader, G., eds.) Pergamon Press, Oxford, pp. 33–55.

    Google Scholar 

  9. Yoshizawa, T., and Wald, G. (1963) Nature, 197, 1279–1286.

    Google Scholar 

  10. Yoshizawa, T. (1972) in Handbook of Sensory Physiology (Dartnall, H. J. A., ed.) Springer-Verlag, Berlin, pp. 69–81.

    Google Scholar 

  11. Shichida, Y., Kobayashi, T., Ohtani, H., Yoshizawa, T., and Nagakura, S. (1978) Photochem. Photobiol., 27, 335–341.

    Google Scholar 

  12. Shichida, Y., Matuoka, S., and Yoshizawa, T. (1984) Photobiochem. Photobiophys., 7, 221–228.

    Google Scholar 

  13. Peters, K., Applebury, M. L., and Rentzepis, P. M. (1977) Proc. Natl. Acad. Sci. USA, 74, 3119–3123.

    Google Scholar 

  14. Dartnall, H. J. A. (1967) Vision Res., 8, 339–358.

    Google Scholar 

  15. Okada, T., Trong, I. L., Fox, B. A., Behnke, C. A., Stenkamp, R. E., and Palczewski, K. (2000) J. Struct. Biol., 130, 73–80.

    Google Scholar 

  16. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Science, 289, 739–745.

    Google Scholar 

  17. Yoshizawa, T., and Kito, Y. (1958) Nature, 182, 1604–1605.

    Google Scholar 

  18. Busch, G. E., Applebury, M. L., Lamola, A. A., and Rentzepis, P. M. (1972) Proc. Natl. Acad. Sci. USA, 69, 2802–2806.

    Google Scholar 

  19. Kawamura, S., Tokunaga, F., Yoshizawa, T., Sarai, A., and Kakitani, T. (1979) Vision Res., 19, 879–884.

    Google Scholar 

  20. Fukada, Y., Shichida, Y., Yoshizawa, T., Ito, M., Kodama, A., and Tsukida, K. (1984) Biochemistry, 23, 5826–5832.

    Google Scholar 

  21. Callender, R. (1982) Meth. Enzymol., 88, 625–633.

    Google Scholar 

  22. Kandori, H., Matuoka, S., Shichida, Y., and Yoshizawa, T. (1989) Photochem. Photobiol., 49, 181–184.

    Google Scholar 

  23. Matuoka, S., Shichida, Y., and Yoshizawa, T. (1984) Biochim. Biophys. Acta, 765, 38–42.

    Google Scholar 

  24. Kandori, H., Shichida, Y., and Yoshizawa, T. (1989) Biophys. J., 56, 453–457.

    Google Scholar 

  25. Sperling, W. (1973) in Biochemistry and Physiology of Visual Pigments (Langer, H., ed.) Springer-Verlag, Heidelberg, pp. 19–28.

    Google Scholar 

  26. Mao, B., Tsuda, M., Ebrey, T. G., Akita, H., Balogh-Nair, V., and Nakanishi, K. (1981) Biophys. J., 35, 543–546.

    Google Scholar 

  27. Buchert, J., Stefancic, V., Doukas, A. G., Alfano, R. R., Callender, R. H., Pande, J., Akita, H., Balogh-Nair, V., and Nakanishi, K. (1983) Biophys. J., 43, 279–283.

    Google Scholar 

  28. Kandori, H., Matuoka, S., Shichida, Y., Yoshizawa, T., Ito, M., Tsukida, K., Balogh-Nair, V., and Nakanishi, K. (1989) Biochemistry, 28, 6460–6467.

    Google Scholar 

  29. Mizukami, T., Kandori, H., Shichida, Y., Chen, A.-H., Derguini, F., Caldwell, C. G., Bigge, C., Nakanishi, K., and Yoshizawa, T. (1993) Proc. Natl. Acad. Sci. USA, 90, 4072–4076.

    Google Scholar 

  30. Doukas, A. G., Junnarker, M. R., Alfano, R. R., Callender, R. H., Kakitani, T., and Honig, B. (1984) Proc. Natl. Acad. Sci. USA, 81, 4790–4794.

    Google Scholar 

  31. Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C. V. (1991) Science, 254, 412–415.

    Google Scholar 

  32. Yan, M., Manor, D., Weng, G., Chao, H., Rothberg, L., Jedju, T. M., Alfano, R. R., and Callender, C. H. (1991) Proc. Natl. Acad. Sci. USA, 88, 9809–9812.

    Google Scholar 

  33. Taiji, M., Bryl, K., Nakagawa, M., Tsuda, M., and Kobayashi, T. (1992) Photochem. Photobiol., 56, 1003–1011.

    Google Scholar 

  34. Schoenlein, R. W., Peteanu, L. A., Wang, Q., Mathies, R. A., and Shank, C. V. (1993) J. Phys. Chem., 97, 12087–12092.

    Google Scholar 

  35. Peteanu, L. A., Schoenlein, R. W., Wang, Q., Mathies, R. A., and Shank, C. V. (1993) Proc. Natl. Acad. Sci. USA, 90, 11762–11766.

    Google Scholar 

  36. Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C. V. (1994) Science, 266, 422–424.

    Google Scholar 

  37. Wang, Q., Kochendoerfer, G. G., Schoenlein, R. W., Verdegem, P. J. E., Lugtenburg, J., Mathies, R. A., and Shank, C. V. (1996) J. Phys. Chem., 100, 17388–17394.

    Google Scholar 

  38. Kandori, H., Sasabe, H., Nakanishi, K., Yoshizawa, T., Mizukami, T., and Shichida, Y. (1996) J. Am. Chem. Soc., 118, 1002–1005.

    Google Scholar 

  39. Kobayashi, T., Kim, M., Taiji, M., Iwasa, T., Nakagawa, M., and Tsuda, M. (1998) J. Phys. Chem. B, 102, 272–280.

    Google Scholar 

  40. Chosrowjan, H., Mataga, N., Shibata, Y., Tachibanaki, S., Kandori, H., Shichida, Y., Okada, T., and Kouyama, T. (1998) J. Am. Chem. Soc., 120, 9706–9707.

    Google Scholar 

  41. Haran, G., Morlino, E. A., Mathes, J., Callender, R. H., and Hochstrasser, R. M. (1999) J. Phys. Chem. A, 103, 2202–2207.

    Google Scholar 

  42. Yan, M., Rothberg, L., and Callender, R. H. (2001) J. Phys. Chem. B, 105, 856–859.

    Google Scholar 

  43. Kandori, H., Furutani, Y., Nishimura, S., Shichida, Y., Chosrowjan, H., Shibata, Y., and Mataga, N. (2001) Chem. Phys. Lett., 334, 271–276.

    Google Scholar 

  44. Kandori, H., Katsuta, Y., Ito, M., and Sasabe, H. (1995) J. Am. Chem. Soc., 117, 2669–2670.

    Google Scholar 

  45. Kochendoerfer, G. G., and Mathies, R. A. (1995) Isr. J. Chem., 35, 211–226.

    Google Scholar 

  46. Mathies, R. A. (1999) in Rhodopsins and Phototransduction (Novartis Foundation Symposium) (Yoshizawa, T., ed.) John Wiley & Sons, Chichester, pp. 70–84.

    Google Scholar 

  47. Becker, R. S., and Freedman, K. (1985) J. Am. Chem. Soc., 107, 1477–1485.

    Google Scholar 

  48. Koyama, Y., Kubo, K., Komori, M., Yasuda, H., and Mukai, Y. (1991) Photochem. Photobiol., 54, 433–443.

    Google Scholar 

  49. Kandori, H., Yoshihara, K., Tomioka, H., and Sasabe, H. (1992) J. Phys. Chem., 96, 6066–6071.

    Google Scholar 

  50. Guzzo, A. V., and Pool, G. L. (1967) Science, 159, 312–314.

    Google Scholar 

  51. Sineshchekov, V. A., Balashov, S. P., and Litvin, F. F. (1983) Dokl. AN SSSR, 270, 1231–1235.

    Google Scholar 

  52. Kochendoerfer, G. G., and Mathies, R. A. (1996) J. Phys. Chem., 100, 14526–14532.

    Google Scholar 

  53. Kakitani, T., Akiyama, R., Hatano, Y., Imamoto, Y., Shichida, Y., Verdegem, P., and Lugtenburg, J. (1998) J. Phys. Chem. B, 102, 1334–1339.

    Google Scholar 

  54. Eyring, G., Curry, B., Broek, A., Lugtenburg, J., and Mathies, R. A. (1982) Biochemistry, 21, 384–393.

    Google Scholar 

  55. Palings, I., van den Berg, E. M. M., Lugtenburg, J., and Mathies, R. A. (1989) Biochemistry, 28, 1498–1507.

    Google Scholar 

  56. Cooper, A. (1979) Nature, 282, 531–533.

    Google Scholar 

  57. Zhukovsky, E. A., and Oprian, D. D. (1989) Science, 246, 928–930.

    Google Scholar 

  58. Sakmar, T. P., Franke, R. R., and Khorana, H. G. (1989) Proc. Natl. Acad. Sci. USA, 86, 8309–8313.

    Google Scholar 

  59. Rothschild, K. J. (1992) J. Bioenerg. Biomembr., 24, 147–167.

    Google Scholar 

  60. Siebert, F. (1995) Isr. J. Chem., 35, 309–323.

    Google Scholar 

  61. Maeda, A., Kandori, H., Yamazaki, Y., Nishimura, S., Hatanaka, M., Chon, Y.-S., Sasaki, J., Needleman, R., and Lanyi, J. K. (1997) J. Biochem., 121, 399–406.

    Google Scholar 

  62. Siebert, F., Mäntele, W., and Gerwert, K. (1983) Eur. J. Biochem., 136, 119–127.

    Google Scholar 

  63. Bagley, K. A., Balogh-Nair, V., Croteau, A. A., Dollinger, G., Ebrey, T. G., Eisenstein, L., Hong, M. K., Nakanishi, K., and Vittitow, J. (1985) Biochemistry, 24, 6055–6071.

    Google Scholar 

  64. DeGrip, W. J., Gray, D., Gillespie, J., Bovee, P. H. M., van den Berg, E. M. M., Lugtenburg, J., and Rothschild, K. J. (1988) Photochem. Photobiol., 48, 497–504.

    Google Scholar 

  65. Kandori, H., and Maeda, A. (1995) Biochemistry, 34, 14220–14229.

    Google Scholar 

  66. Kandori, H. (2000) Biochim. Biophys. Acta, 1460, 177–191.

    Google Scholar 

  67. Nagata, T., Terakita, A., Kandori, H., Kojima, D., Shichida, Y., and Maeda, A. (1997) Biochemistry, 36, 6164–6170.

    Google Scholar 

  68. Nagata, T., Terakita, A., Kandori, H., Shichida, Y., and Maeda, A. (1998) Biochemistry, 37, 17216–17222.

    Google Scholar 

  69. Shichida, Y., Ono, T., Yoshizawa, T., Matsumoto, H., Asato, A. E., Zingoni, J. P., and Liu, R. S. H. (1987) Biochemistry, 26, 4422–4428.

    Google Scholar 

  70. Borhan, B., Souto, M. L., Imai, H., Shichida, Y., and Nakanishi, K. (2000) Science, 288, 2209–2212.

    Google Scholar 

  71. Siebert, F. (1995) Israel J. Chem., 35, 309–323.

    Google Scholar 

  72. Eilers, M., Reeves, P. J., Ying, W., Khorana, H. G., and Smith, S. O. (1999) Proc. Natl. Acad. Sci. USA, 96, 487–492.

    Google Scholar 

  73. Verhoeven, M. A., Creemers, A. F. L., Bovee-Geurts, P. H. M., de Grip, W. J., Lugtenburg, J., and de Groot, H. J. M. (2001) Biochemistry, 40, 3282–3288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandori, H., Shichida, Y. & Yoshizawa, T. Photoisomerization in Rhodopsin. Biochemistry (Moscow) 66, 1197–1209 (2001). https://doi.org/10.1023/A:1013123016803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013123016803

Navigation