Abstract
Continuing increases in computing power and availability mean that many maximum likelihood estimation (MLE) problems previously thought intractable or too computationally difficult can now be tackled numerically. However, ML parameter estimation for distributions whose only analytical expression is as quantile functions has received little attention. Numerical MLE procedures for parameters of new families of distributions, the g-and-k and the generalized g-and-h distributions, are presented and investigated here. Simulation studies are included, and the appropriateness of using asymptotic methods examined. Because of the generality of these distributions, the investigations are not only into numerical MLE for these distributions, but are also an initial investigation into the performance and problems for numerical MLE applied to quantile-defined distributions in general. Datasets are also fitted using the procedures here. Results indicate that sample sizes significantly larger than 100 should be used to obtain reliable estimates through maximum likelihood.
This is a preview of subscription content, access via your institution.
Similar content being viewed by others
References
Balanda K.P. and MacGillivray H.L. 1990. Kurtosis and spread.Canadian Journal of Statistics 18:17-30.
Bowley A.L. 1901. Elements of Statistics, 6th ed., 1937. Staples Press Ltd, London.
David F.N. and Johnson N.L. 1956. Some tests of significance with ordered variables. Journal of the Royal Statistical Society Series B (Methodological) 18: 1-20.
Freimer M., Kollia G., Mudholker G.S., and Lin C.T. 1988. A study of the generalized Tukey lambda family. Communications in Statististics-Theory and Methods 17(10): 3547-3567.
Goldberg D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Inc.
Haynes M.A., Gatton M.L., and Mengersen K.L. 1997. Generalized control charts for nonnormal data. School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia, Technical Report Number 97/4.
Haynes M.A., MacGillivray H.L., and Mengersen K.L. 1997. Robustness of ranking and selection rules using generalized g-and-k distributions. Journal of Statistical Planning and Inference 65: 45-66.
Hoaglin D.C. 1986. Summarizing shape numerically: The g-and-h distributions. In: Hoaglin D.C., Mosteller F., and Tukey J.W. (Eds.), Exploring Data Tables, Trends and Shapes. Wiley, New York.
Hogg R.V. and Ledolter J. 1987. Engineering Statistics. MacMillan Publishing Company, New York.
King R.A.R. and MacGillivray H.L. 1999. A Starship estimation method for the generalized λ distributions. Australian & New Zealand Journal of Statistics 41(3): 353-374.
MacGillivray H.L. 1986. Skewness and asymmetry: Measures and orderings.The Annals of Statistics 14(3): 994-1011.
MacGillivray H.L. and Balanda K.P. 1988. The relationships between skewness and kurtosis. Australian Journal of Statistics 30(3): 319-337.
MacGillivray H.L. 1992. Shape properties of the g-and-h and Johnson families. Communications in Statistics-Theory and Methods 21(5): 1233-1250.
MacGillivray H.L. and Cannon W.H. 2000. Generalizations of the g-and-h distributions and their uses. (Preprint copies may be obtained by contacting the first author.)
Martinez J. and Iglewicz B. 1984. Some properties of the Tukey g-and-h family of distributions. Communications in Statistics-Theory and Methods 13(3): 353-369.
Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. 1993. Numerical Recipes in C: The Art of Scientific Computing. Cambridge, Cambridge University Press.
Ramberg J.S. and Schmeiser B.W. 1974. An approximate method for generating asymmetric random variables. Communications ACM 17: 78-82.
Ramberg J.S., Tadikamalla P.R., Dudewicz E.J., and Mykytka E.F. 1979. A probability distribution and its uses in fitting data. Technometrics 21(2): 201-214.
Rayner G.D. 2000. Statistical methodologies for quantile-based distributional families. Ph.D. Thesis, Queensland University of Technology (QUT).
Rayner J.C.W. and Best D. 1989. Smooth Tests of Goodness of Fit. Oxford University Press, New York.
Stuart A. and Ord J.K. 1991. Kendall's Advanced Theory of Statistics.Volume 2: Classical Inference and Relationship, 5th edn., Edward Arnold.
Thomas G.M., Gerth R., Velasco T., and Rabelo L.C. 1995. Using real-coded genetic algorithms for Weibull parameter estimation. In: 17th International Conference on Computers and Industrial Engineering, 29, pp. 377-381.
Tukey J.W. 1977. Modern techniques in data analysis. In: NSF-Sponsored Regional Research Conference, Southeastern Massachusetts University, North Dartmouth, Massachusetts.
Van Zwet W.R. 1964. Convex transformations of random variables.In: Mathematical Center Tracts 7, Mathematisch Centrum, Amsterdam.
Rights and permissions
About this article
Cite this article
Rayner, G.D., MacGillivray, H.L. Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions. Statistics and Computing 12, 57–75 (2002). https://doi.org/10.1023/A:1013120305780
Issue Date:
DOI: https://doi.org/10.1023/A:1013120305780