Skip to main content
Log in

Densification and strength evolution in solid-state sintering Part II Strength model

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A compact gains strength in sintering through low-temperature interparticle bonding, followed by further strength contributions from high-temperature densification. On the other hand, thermal softening substantially reduces a compact's strength at high temperatures. Therefore, the in situ strength during sintering is determined by the competition among interparticle neck growth, densification, and thermal softening. Distortion in sintering occurs when the compact is weak. Most strength models for sintered materials are semi-empirical relations based on the sintered fractional density. These models do not include microstructure or sintering cycle parameters; thus, they do not provide guidelines for thermal cycle design to improve compact dimensional control. A strength evolution model is derived which combines sintering theories and microstructure parameters, including interparticle neck size, solid volume fraction, and particle coordination number. The model predicts sintered strength and when combined with thermal softening gives a good prediction of in situ strength. The validity of the model is verified by comparison to experimental data for sintered and in situ strength of bronze and steel powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. GERMAN, “Sintering Theory and Practice” (John Wiley & Sons, New York, NY, 1996). 125

    Google Scholar 

  2. Idem., “Particle Packing Characteristics” (Metal Powder Industrials Federation, Princeton, NJ, 1989).

    Google Scholar 

  3. I. H. MOON and J. S. CHOI, Powder Metall. 28 (1985) 21.

    Google Scholar 

  4. A. C. NYCE and W. M. SHAFFER, Inter. J Powder Metall. 8(4) (1972) 171.

    Google Scholar 

  5. V. A. TRACEY, “Modern Developments in Powder Metallurgy,” vol. 15, edited by E. N. Aqua and C. I. Whitman (Metal Powder Industries Federation, Princeton, NJ, 1985) vol. 15, 289.

    Google Scholar 

  6. G. A. SHOALES and R. M. GERMAN, “ Metall. Mater. Trans. A,” 29A (1998) 1257.

    Google Scholar 

  7. Idem., ibid. 30A (1999) 465.

  8. M. F. ASHBY, Acta Metall. 22 (1974) 259.

    Google Scholar 

  9. K. S. HWANG, R. M. GERMAN and F. V. LENEL, Powder Metall. Inter. 23(2) (1991) 86.

    Google Scholar 

  10. S. G. DUBOIS, M. S. Thesis, The Pennsylvania State University, University Park, PA, 1995.

    Google Scholar 

  11. R. M. GERMAN and Z. A. MUNIR, Metall. Trans. B 6B (1975) 289.

    Google Scholar 

  12. Idem., Metall Trans. A 6A (1975) 2229.

    Google Scholar 

  13. C. M. SIERRA and D. LEE, Powder Metall. Inter. 20 (1988) 28.

    Google Scholar 

  14. S. H. HILLMAN and R. M. GERMAN, J. Mater. Sci. 27 (1992) 2641.

    Google Scholar 

  15. G. NEUMANN and G. M. NEUMANN, “Surface Self-Diffusion of Metals” (Diffusion Information Center, Bay Village, OH, 1972).

    Google Scholar 

  16. I. KAUR, W. GUST and L. KOZMA, “Handbook of Grain and Interphase Boundary Diffusion Data” (Ziegler Press, Stuttgart, Germany, 1989) vol. 1.

    Google Scholar 

  17. E. A. BRANDES, (ed.), “Smithells Metals Reference Book,” 7th edn.(Butterworth-Heinemann, Oxford, UK, 1992).

    Google Scholar 

  18. I. KAUR, W. GUST and L. KOZMA, “Handbook of Grain and Interphase Boundary Diffusion Data” (Ziegler Press, Stuttgart, Germany, 1989), vol. 2.

    Google Scholar 

  19. R. M. GERMAN, Mater. Trans. 42 (2001) 1409.

    Google Scholar 

  20. XIAOPING XU, WUWEN YI and R. M. GERMAN, J. Mater. Sci, to be published.

  21. R. HAYNES, Metal Powder Report 46(2) (1991) 49.

    Google Scholar 

  22. Idem., Powder Metall. 14 (1971) 64.

    Google Scholar 

  23. E. NAVARA and B. BENGTSSON, Inter. J. Powder Metall. Powder Technol. 2(1) (1984) 33.

    Google Scholar 

  24. L. CIFUENTES and A. J. FLETCHER, ibid. 20 (1984) 51.

    Google Scholar 

  25. S. JAISWAL, A. J. FLETCHER and R. T. CUNDILL, ibid. 19 (1983) 51.

    Google Scholar 

  26. N. E. BAGSHAW, M. P. BARNES and J. A. EVANS, Powder Metall. 10(19) (1967) 13.

    Google Scholar 

  27. G. C. KUCZYNSKI, Trans. AIME 185 (1949) 169.

    Google Scholar 

  28. D. L. JOHNSON, Physics of Sintering 1 (1967) 22.

    Google Scholar 

  29. W. D. KINGERY and M. BERG, J. Appl. Phys. 26 (1955) 1205.

    Google Scholar 

  30. W. D. PILKEY, “Peterson's Stress Concentration Factors,” 2nd edn. (John Wiley & Sons, New York, NY, 1997).

    Google Scholar 

  31. J. L. JOHNSON, Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 1994. Received 28 November 2000 and accepted 28 August 2001 126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Lu, P. & German, R.M. Densification and strength evolution in solid-state sintering Part II Strength model . Journal of Materials Science 37, 117–126 (2002). https://doi.org/10.1023/A:1013110328307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013110328307

Keywords

Navigation