Skip to main content
Log in

Data Analysis Without Fourier Transformation for Sawtooth-type Temperature-modulated DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The response of a differential scanning calorimeter (DSC) to sawtooth-type temperature modulation has been analyzed in the time domain using a standard treatment of the DSC data without Fourier transformation into the frequency domain. This method has some of the advantages of a temperature-modulated DSC (TMDSC) and may achieve a reasonable accuracy with more transparent and less time-consuming data analysis than the current TMDSC. The limits of linearity and stationarity of the thermal response, a prerequisite for the validity of the calculation of the reversing heat capacity by Fourier transformation, can be easily recognized in standard DSC. In contrast to the common handling of TMDSC, where the non-reversing contributions are calculated as difference between the total and reversing parts, we define a new, directly measured quantity, called the imbalance in heat capacity. It represents the difference between heating and cooling due to the non-reversing thermal process. This quantity is also of value for the representation of irreversible contributions inquasi-isothermal processes, such as cold crystallization and the annealing of crystallites in the melting range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Reading, Trends in Polymer Sci., 8 (1993) 248.

    Google Scholar 

  2. M. Reading, D. Elliot and V. L. Hill, J. Thermal Anal., 40 (1993) 949.

    CAS  Google Scholar 

  3. P. H. Gill, S. R. Sauerbrunn and M. Reading, J. Thermal Anal., 40 (1993) 931.

    CAS  Google Scholar 

  4. B. Wunderlich, Y. Jin and A. Boller, Thermochim. Acta, 238 (1994) 277.

    Article  CAS  Google Scholar 

  5. M. Merzlyakov and C. Schick, Thermochim. Acta, 330 (1999) 55.

    Article  CAS  Google Scholar 

  6. B. Wunderlich, A. Boller, I. Okazaki, K. Ishikiriyama, W. Chen, M. Pyda, J. Pak, I. Moon and R. Androsch, Thermochim. Acta, 330 (1999) 21.

    Article  CAS  Google Scholar 

  7. S. X. Xu, Y. Li and Y. P. Feng, Thermochim. Acta, 343 (2000) 81.

    Article  CAS  Google Scholar 

  8. J. M. Hutchinson and S. Montserrat, J. Thermal Anal., 47 (1996) 103.

    Article  CAS  Google Scholar 

  9. B. Wunderlich, A. Boller, I. Okazaki and S. Kreitmeier, J. Thermal Anal., 47 (1996) 1013.

    Article  CAS  Google Scholar 

  10. J. M. Hutchinson and S. Montserrat, Thermochim. Acta, 286 (1996) 263.

    Article  CAS  Google Scholar 

  11. B. Wunderlich and I. Okazaki, J. Thermal Anal., 49 (1997) 57.

    Article  CAS  Google Scholar 

  12. S. L. Simon and G. B. McKenna, Thermochim. Acta, 348 (2000) 77.

    Article  CAS  Google Scholar 

  13. A. Boller, C. Schick and B. Wunderlich, Thermochim. Acta, 266 (1995) 97.

    Article  CAS  Google Scholar 

  14. A. Boller, I. Okazaki and B. Wunderlich, Thermochim. Acta, 84 (1996) 1.

    Article  Google Scholar 

  15. L. C. Thomas, A. Boller; I. Okazaki and B. Wunderlich, Thermochim. Acta, 291 (1997) 85.

    Article  CAS  Google Scholar 

  16. I. Okazaki and B. Wunderlich, J. Polymer Sci., Part B: Polymer Phys., 34 (1996) 1941.

    Article  Google Scholar 

  17. B. Wunderlich, D. M. Bodily and M. H. Kaplan, J. Appl. Phys., 35 (1964) 95.

    Article  CAS  Google Scholar 

  18. B. Wunderlich, Macromolecular Physics, Vol. 2, Crystal Nucleation, Growth, Annealing, Vol. 3, Crystal Melting, Academic Press, New York 1976, 1980.

    Google Scholar 

  19. A. Toda, T. Oda, M. Hikosaka and Y. Saruyama, Polymer, 38 (1997) 231.

    Article  CAS  Google Scholar 

  20. R. Androsch and B. Wunderlich, Macromolecules, 32 (1999) 7238.

    Article  CAS  Google Scholar 

  21. R. Androsch and B. Wunderlich, Macromolecules, 33 (2000) 9076.

    Article  CAS  Google Scholar 

  22. B. Wunderlich, J. Phys. Chem., 69 (1965) 2078.

    CAS  Google Scholar 

  23. M. Pyda, Y. K. Kwon and B. Wunderlich, Thermochim. Acta, 367/368 (2001) 217.

    Article  Google Scholar 

  24. R. Androsch, I. Moon, S. Kreitmeier and B. Wunderlich, Thermochim. Acta, 357/358 (2000) 267.

    Article  Google Scholar 

  25. Y. K. Kwon, R. Androsch, M. Pyda and B. Wunderlich, Thermochim. Acta, 367/368 (2001) 203.

    Article  Google Scholar 

  26. J. Pak and B. Wunderlich, Thermochim. Acta, 367/368 (2001) 229.

    Article  Google Scholar 

  27. R. Riesen, G. Widmann and R. Truttmann, Thermochim. Acta, 272 (1996) 27.

    Article  CAS  Google Scholar 

  28. B. Schenker, G. Widmann and R. Riesen, J. Thermal Anal., 49 (1997) 1097.

    Article  CAS  Google Scholar 

  29. W. Sichina and R. Cassel, Proc. 28th NATAS Conf. in Orlando, FL, Oct. 4-6, K. J. Kociba and T. Kirchner-Jean, Eds, 28 (2000) 158.

  30. B. Wunderlich, Thermochim. Acta, 5 (1973) 369.

    Article  CAS  Google Scholar 

  31. Y. K. Kwon, A. Boller, M. Pyda and B. Wunderlich, Polymer, 41 (2000) 6237.

    Article  CAS  Google Scholar 

  32. Advanced Thermal Analysis System, for a description see, for example B. Wunderlich, Pure and Applied Chem., 67 (1995) 1919. For values see the downloadable database on the internet, URL: http://web.utk.edu/~athas.

  33. B. Wunderlich, Thermal Analysis, Academic Press, Boston, MA, 1990, or the updated computer course: Thermal Analysis of Materials, downloadable from the internet.

    Google Scholar 

  34. E. Gmelin and S. M. Sarge, Thermochim. Acta, 347 (2000) 9.

    Article  CAS  Google Scholar 

  35. D. G. Archer, J. Phys. Chem. Ref. Data, 22 (1993) 1441.

    Article  CAS  Google Scholar 

  36. B. Wunderlich, R. Androsch, M. Pyda and Y. K. Kwon, Thermochim. Acta, 348 (2000) 181.

    Article  CAS  Google Scholar 

  37. B. Wunderlich, I. Okazaki, K. Ishikiriyama and A. Boller, Thermochim. Acta, 324 (1998) 77.

    Article  CAS  Google Scholar 

  38. B. Wunderlich, J. Thermal Anal., 48 (1997) 207.

    Article  CAS  Google Scholar 

  39. M. L. di Lorenzo and B. Wunderlich, J. Therm. Anal. Cal., 57 (1999) 459.

    Article  CAS  Google Scholar 

  40. T. Hatakeyama and F. X. Quinn, Thermal Analysis, Fundamentals and Applications to Polymer Science, 2nd Ed., Wiley, Chichester 1999, p. 98.

    Google Scholar 

  41. I. Okazaki and B. Wunderlich, Macromolecules, 30 (1997) 1758.

    Article  CAS  Google Scholar 

  42. I. Okazaki and B. Wunderlich, Macromol. Rapid Commun., 18 (1997) 313.

    Article  CAS  Google Scholar 

  43. C. Schick, M. Merzlyakov and B. Wunderlich, Polym. Bull., 40 (1998) 297.

    Article  CAS  Google Scholar 

  44. R. Androsch and B. Wunderlich, Thermochim. Acta, 364 (2000) 181.

    Article  CAS  Google Scholar 

  45. R. Androsch and B. Wunderlich, Thermochim. Acta, 369 (2001) 67.

    Article  CAS  Google Scholar 

  46. Proc. of the TA Instruments Modulated DSC Seminar and Training Course Oct. 25 and 26 (1999), as well as the Proc. 27th NATAS Conf. in Savannah, GA, planned for Sept. 19-22, K. R. Williams and K. Kociba, Eds 1999.

  47. W. Hu, T. Albrecht and G. Strobl, Macromolecules, 32 (1999) 7548.

    Article  CAS  Google Scholar 

  48. P. Kamasa, M. Merzlyakov, P. Pyda, J. Pak, C. Schick and B. Wunderlich, Thermochim. Acta, submitted, Proc. 28th NATAS Conf. in Orlando, FL, Oct. 4-6, K. J. Kociba and T. Kirchner-Jean, 28 (2000) 889.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Wunderlich, B. Data Analysis Without Fourier Transformation for Sawtooth-type Temperature-modulated DSC. Journal of Thermal Analysis and Calorimetry 66, 677–697 (2001). https://doi.org/10.1023/A:1013106118660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013106118660

Navigation