Skip to main content
Log in

The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the smoothness problem in cosmology by focussing on the ambiguities originated in the simplifying hypotheses aimed at observationally verifying if the large-scale distribution of galaxies is homogeneous, and conjecturing that this distribution should follow a fractal pattern, in the sense of having a power-law type average density profile, in perturbed standard cosmologies. This is due to a geometrical effect, appearing when certain types of average densities are calculated along the past light cone. The paper starts by reviewing the argument concerning the possibility that the galaxy distribution follows such a scale invariant pattern, and the premises behind the assumption that the spatial homogeneity of standard cosmology can be observable. Next, it is argued that in order to discuss observable homogeneity one needs to make a clear distinction between local and average relativistic densities, and showing how the different distance definitions strongly affect them, leading the various average densities to display asymptotically opposite behaviours. Then the paper revisits Ribeiro's (1995) results, showing that in a fully relativistic treatment some observational average densities of the flat Friedmann model are not well defined at z ∼ 0.1, implying that at this range average densities behave in a fundamentally different manner as compared to the linearity of the Hubble law, well valid for z < 1. This conclusion brings into question the widespread assumption that relativistic corrections can always be neglected at low z. It is also shown how some key features of fractal cosmologies can be found in the Friedmann models. In view of those findings, it is suggested that the so-called contradiction between the cosmological principle, and the galaxy distribution forming an unlimited fractal structure, may not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abdalla, E., Mohayaee, R., and Ribeiro, M. B. (2001). Fractals, in press. astro-ph /9910003.

  2. Amendola, L. 2000. Proc. of the IX Brazilian School of Cosmology and Gravitation, M. Novello, in press.

  3. Amoroso Costa, M. (1929). Annals of Brazilian Acad. Sci. 1, 51, (in Portuguese).

    Google Scholar 

  4. Binney, J., and Merrifield, M. (1998). Galactic Astronomy, (Princeton University Press).

  5. Bondi, H. (1960). Cosmology, 2nd ed., (Cambridge University Press).

  6. Bonnor, W. B. (1972). Monthly Not. Royal Astron. Soc. 159, 261.

    Google Scholar 

  7. Buchert, T. (1997a). Proc. 2nd SBF Workshop on Astro-Particle Physics, Ringberg 1996, proc. series SBF375 /P002, R. Bender et al., 71, astro-ph /9706214.

  8. Buchert, T. (1997b).Astron. Astrophys. 320, 1, astro-ph /9510056.

    Google Scholar 

  9. Buchert, T. (2000). 9th JGRG Meeting, Hiroshima 1999, invited paper, gr-qc /0001056.

  10. Callan, C., Dicke, R. H., and Peebles, P. J. E. (1965). American J. Phys. 33, 105.

    Google Scholar 

  11. Cappi, A., Benoist, C., da Costa, L. N., and Maurogordato, S. (1998). Astron. Astrophys. 335, 779.

    Google Scholar 

  12. Charlier, C. V. L. (1908). Ark. Mat. Astron. Fys. 4, 1.

    Google Scholar 

  13. Charlier, C. V. L. (1922). Ark. Mat. Astron. Fys. 16, 1.

    Google Scholar 

  14. Coleman, P. H., and Pietronero, L. (1992). Phys. Rep. 213, 311.

    Google Scholar 

  15. Coles, P. (1998). Nature 391, 120.

    Google Scholar 

  16. Davis, M. (1997). Critical Dialogues in Cosmology, Ed.: N. Turok, (Singapore: World Scientific), 13, astro-ph /9610149.

    Google Scholar 

  17. de Vaucouleurs, G. (1970a). Science 167, 1203.

    Google Scholar 

  18. de Vaucouleurs, G. (1970b). Science 168, 917.

    Google Scholar 

  19. de Vaucouleurs, G., and Wertz, J. R. (1971). Nature 231, 109.

    PubMed  Google Scholar 

  20. d'Inverno, R. (1992). Introducing Einstein' Relativity, (Oxford: Clarendon Press).

    Google Scholar 

  21. Disney, M. J. (2000). Gen. Rel. Grav. 32, 1125, astro-ph /0009020.

    Google Scholar 

  22. Ellis, G. F. R. (1971). General Relativity and Cosmology, Proc. of the International School of Physics “Enrico Fermi,” R. K. Sachs,(New York: Academic Press), 104.

    Google Scholar 

  23. Ellis, G. F. R. (2000). Gen. Rel. Grav. 32, 1135.

    Google Scholar 

  24. Ellis, G. F. R., and Rothman, T. (1993). American J. Phys. 61, 883.

    Google Scholar 

  25. Etherington, I. M. H. (1933). Phil. Mag. 15, 761; reprinted, Gen. Rel. Grav., in press.

    Google Scholar 

  26. Fournier D'Albe, E. E. (1907). Two New Worlds: I The Infra World; II The Supra World, (London: Longmans Green).

    Google Scholar 

  27. Harrison, E. R. (1993). Astrophys. J. 403, 28.

    Google Scholar 

  28. Harrison, E. R. (2000). Cosmology, 2nd ed., (Cambridge University Press).

  29. Hogg, D. W. (1999). astro-ph /9905116.

  30. Humphreys, N. P., Matravers, D. R., and Marteens, R. (1998). Class. Quantum Grav. 15, 3041, gr-qc /9804025.

    Google Scholar 

  31. Joyce, M., Anderson, P. W., Montuori, M., Pietronero, L., and Sylos-Labini, F. (2000). Europhys. Lett. 50, 416, astro-ph /0002504.

    Google Scholar 

  32. Keynes, J. M. (1936). The General Theory of Employment, Interest, and Money, preface.

  33. Kristian, J., and Sachs, R. K. (1966). Astrophys. J. 143, 379.

    Google Scholar 

  34. Longair, M. S. (1995). The Deep Universe, Saas-Fee Advanced Course 23, B Binggeli and R. Buser, (Berlin: Springer), 317.

    Google Scholar 

  35. Mandelbrot, B. B. (1983). The Fractal Geometry of Nature, (New York: Freeman).

    Google Scholar 

  36. Martínez, V. J. (1999). Science 284, 445.

    Google Scholar 

  37. McCrea, W. H. (1935). Zeit. für Astrophysik 9, 290.

    Google Scholar 

  38. McCrea, W. H., and Milne, E. A. (1934). Quart. J. Math. (Oxford Ser.) 5, 73; reprinted in 2000, Gen. Rel. Grav. 32, 1949.

    Google Scholar 

  39. McVittie, G. C. (1974). Quart. J. Royal Astr. Soc. 15, 246.

    Google Scholar 

  40. Milne, E. A. (1934). Quart. J. Math. (Oxford Ser.) 5, 64; reprinted in 2000, Gen. Rel. Grav. 32, 1939.

    Google Scholar 

  41. Oldershaw, R. L. (1997). http://www.amherst.edu //rlolders /LOCH.HTM

  42. Pan, J., and Coles, P. (2000). Monthly Not. Royal Astron. Soc., in press, astro-ph /0008240.

  43. Peebles, P. J. E. (1980). The Large-Scale Structure of the Universe, (Princeton University Press).

  44. Peebles, P. J. E. (1993). Principles of Physical Cosmology, (Princeton University Press).

  45. Pietronero, L. (1987). Physica A 144, 257.

    Google Scholar 

  46. Pietronero, L., Montuori, M., and Sylos-Labini, F. (1997). Critical Dialogues in Cosmology, Ed.: N. Turok (Singapore: World Scientific), 24, astro-ph /9611197.

    Google Scholar 

  47. Pietronero, L., and Sylos-Labini, F. (2000). Proc. 7th Course in Astro-Fundamental Physics, Erice 1999, in press, astro-ph /0002124.

  48. Ribeiro, M. B. (1992a). Astrophys. J. 388, 1.

    Google Scholar 

  49. Ribeiro, M. B. (1992b). Astrophys. J. 395, 29.

    Google Scholar 

  50. Ribeiro, M. B. (1993). Astrophys. J. 415, 469.

    Google Scholar 

  51. Ribeiro, M. B. (1994). Deterministic Chaos in General Relativity, D. Hobbil, A. Burd, and A. Coley, (New York: Plenum Press), 269.

    Google Scholar 

  52. Ribeiro, M. B. (1995). Astrophys. J. 441, 477, astro-ph /9910145.

    Google Scholar 

  53. Ribeiro, M. B. (1999). gr-qc /9910014.

  54. Ribeiro, M. B. (2001), gr-qc /9909093.

  55. Ribeiro, M. B., and Miguelote, A. Y. (1998). Brazilian J. Phys. 28, 132, astro-ph /9803218.

    Google Scholar 

  56. Ribeiro, M. B., and Videira, A. A. P. (1998). Apeiron 5, 227, physics /9806011.

    Google Scholar 

  57. Sandage, A. (1988). Annual Rev. Astron. Astrophys. 26, 561.

    Google Scholar 

  58. Sandage, A. (1995). The Deep Universe, Saas-Fee Advanced Course 23, B. Binggeli and R. Buser, (Berlin: Springer), 1.

    Google Scholar 

  59. Sandage, A., Tammann, G. A., and Hardy, E. (1972). Astrophys. J. 172, 253.

    Google Scholar 

  60. Sandage, A., and Tammann, G. A. (1975). Astrophys. J. 196, 313.

    Google Scholar 

  61. Schneider, P., Ehlers, J., and Falco, E. E. (1992). Gravitational Lenses, (Berlin: Springer).

    Google Scholar 

  62. Sciama, D. W. (1993). Modern Cosmology and the Dark Matter Problem, (Cambridge University Press).

  63. Sylos-Labini, F., Montuori, M., and Pietronero, L. (1998). Phys. Rep. 293, 61, astro-ph /9711073.

    Google Scholar 

  64. Weinberg, S. (1972). Gravitation and Cosmology, (New York: Wiley).

    Google Scholar 

  65. Wertz, J. R. (1970). Newtonian Hierarchical Cosmology, PhD thesis (University of Texas at Austin).

    Google Scholar 

  66. Wertz, J. R. (1971). Astrophys. J. 164, 227.

    Google Scholar 

  67. Wu, K. K. S., Lahav, O., and Rees, M. J. (1999). Nature 397, 225, astro-ph /9804062.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, M.B. The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies. General Relativity and Gravitation 33, 1699–1730 (2001). https://doi.org/10.1023/A:1013095316494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013095316494

Navigation