Advertisement

Antonie van Leeuwenhoek

, Volume 80, Issue 3–4, pp 215–224 | Cite as

Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats

  • Seraphim Papanikolaou
  • Isabelle Chevalot
  • Michael Komaitis
  • George Aggelis
  • Ivan Marc
Article

Abstract

Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.

animal fat cocoa-butter substitute kinetics microbial lipids oleic rapeseed oil Yarrowia lipolytica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F.NOR. (1984) Recueil de normes françaises des corps gras, graines oléagineuses, produits dérivés, Association Française de NORmalisation eds, Paris, 3ème edition: pp 95Google Scholar
  2. Aggelis G, Komaitis M, Papanikolaou S & Papadopoulos G (1995a) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Gracas y Aceites 46: 169-173Google Scholar
  3. Aggelis G, Komaitis M, Papanikolaou S & Papadopoulos g (1995b) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. II. Study of cellular lipids of Mucor circinelloides during growth on a vegetable oil. Gracas y Aceites 46: 245-250Google Scholar
  4. Aggelis G, Papadiotis G & Komaitis M (1997) Microbial fatty acid specificity. Folia Microbiol. 42: 117-120Google Scholar
  5. Aggelis G & Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous micro-organisms growing on vegetable oils. Antonie van Leeuwenhoek 72: 159-165Google Scholar
  6. Davies RJ, Holdswoth JE & Reader SL (1990) The effect of low oxygen uptake rate on the fatty acid profile of the oleaginous yeast Apiotrichum curvatum. Appl. Microbiol. Biotechnol. 33: 569-573Google Scholar
  7. Davies J & Holdsworth J (1992) Synthesis of lipids in yeasts, biochemistry, physiology and production. Adv. Appl. Lipid Res. 1: 119-159Google Scholar
  8. Folch J, Lees M & Slane-Stanley J (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509Google Scholar
  9. Gierhart DI (1982a) Multistage process for the preparation of fats and oils. UK Patent 2091, 285AGoogle Scholar
  10. Gierhart DI (1982b) Preparation of fats and oils. UK Patent 2091, 286AGoogle Scholar
  11. Glatz BA, Hammond EG, Hsu KH, Baehman L, Bati N, Bednarski W, Brown D & Floetenmeyer M (1984) Production and modification of fats and oils by yeast fermentation. In: Ratledge C, Rattray JBM & Dawson PSS (Eds). Biotechnology for the Oils and Fats Industry (pp 163-176). American Oil Chemists' Society, ChampaignGoogle Scholar
  12. Kamisaka Y, Yokochi T, Nakahara T & Suzuki O (1990) Incorporation of linoleic acid and its conversion to γ-linolenic acid in fungi. Lipids 25: 54-60Google Scholar
  13. Kendrick A & Ratledge C (1992) Lipid formation in the oleaginous mould Entomophthora exitalis grown in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Appl. Microbiol. Biotechnol. 37: 18-22Google Scholar
  14. Lee I (1992) Study of triacylglycerol assembly by Apiotrichum curvatum ATCC 20509 as a model system. Diss. Abstr. Int. B. 52: 5601Google Scholar
  15. Matsuo T, Terashima M, Hashimoto Y & Hasida W (1981) US Patent 4308, 350Google Scholar
  16. Meesters PAEP, Huijberts GNM & Eggink G (1996) High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biotechnol. 45: 575-579Google Scholar
  17. Montet D, Ratomahenina R, Galzy P, Pina M & Graille J (1985) A study of the influence of the growth media on the fatty acid composition in Candida lipolytica DIDDENS and LODDER. Biotechnol. Lett. 7: 733-736Google Scholar
  18. Moreton RS (1985) Modification of fatty acid composition of lipid accumulating yeasts with cyclopropene fatty acid desaturase inhibitors. Appl. Microbiol. Biotechnol. 22: 41-45Google Scholar
  19. Papanikolaou S (1998) Étude du comportement physiologique d'une souche de Yarrowia lipolytica en croissance sur des coproduits industriel: production orientée des lipides cellulaires. Thèse de Doctorat. I.N.P.L., Nancy, France.Google Scholar
  20. Radwan SS & Soliman AH (1988) Arachidonic acid from fungi utilizing fatty acids with shorter chains as sole sources of carbon and energy. J. Gen. Microbiol. 134: 387-393Google Scholar
  21. Ratledge C & Boulton CA (1985) Fats and Oils. In: Cooney CL & Humphrey AE (Eds). Comprehensive biotechnology, the principles, applications and regulations of biotechnology in industry, agriculture and medecine (pp 983-1003). Pergamon Press, Oxford, New York, Toronto, Sydney, FrankfurtGoogle Scholar
  22. Ratledge C (1994) Yeasts, moulds, algae and bacteria as sources of lipids. In: Kamel BS & Kakuda Y (Eds). Technological advances in improved and alternative sources of lipid (pp 235-291). Blackie Academic and Professional, LondonGoogle Scholar
  23. Smit H, Ykema A, Verbree EC, Verwoert IIGS & Kater MM (1992) Production of cocoa butter equivalents by yeast mutants. In: Kyle DJ & Ratledge C (Eds). Industrial production of S.C.O. (pp 185-195). ChampaignGoogle Scholar
  24. Ykema A, Verbree EC, Kater MM & Smit H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in wheypermeate. Appl. Microbiol. Biotechnol. 29: 211-218Google Scholar
  25. Ykema A, Verbree EC, Nijkamp HJJ & Smit H (1989) Isolation and characterization of fatty acid auxotrophs from the oleaginous yeast Apiotrichum curvatum. Appl. Microbiol. Biotechnol. 32: 76-84Google Scholar
  26. Ykema A, Verbree EC, Verwoert IIGS, Van der Linden KH, Nijkamp HJJ & Smit H (1990) Lipid production of revertants of Ufa mutants from the oleaginous yeast Apiotrichum curvatum. Appl. Microbiol. Biotechnol. 33: 176-182Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Seraphim Papanikolaou
    • 1
  • Isabelle Chevalot
    • 1
  • Michael Komaitis
    • 2
  • George Aggelis
    • 3
  • Ivan Marc
    • 1
  1. 1.Laboratoire des Sciences du Génie ChimiqueC.N.R.S. – E.N.S.I.C./E.N.S.A.I.A. U.P.R. 6811, 13Vandœuvre-lès-Nancy –France
  2. 2.Laboratory of Food Chemistry, Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  3. 3.Laboratory of General and Agricultural Microbiology, Department of Agricultural BiotechnologyAgricultural University of AthensAthensGreece

Personalised recommendations