Skip to main content
Log in

Torsion Degrees of Freedom in the Regge Calculus as Dislocations on the Simplicial Lattice

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using the notion of a general conical defect, the Regge Calculus is generalized by allowing for dislocations on the simplicial lattice in addition to the usual disclinations. Since disclinations and dislocations correspond to curvature and torsion singularities, respectively, the method we propose provides a natural way of discretizing gravitational theories with torsion degrees of freedom like the Einstein-Cartan theory. A discrete version of the Einstein-Cartan action is given and field equations are derived, demanding stationarity of the action with respect to the discrete variables of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Regge, T. (1961). General Relativity without Coordinates, Nuovo Cimento 19, 558.

    Google Scholar 

  2. Cartan, É. (1922). Sur une généralisation de la notion de courbure de Riemann et les espaces `a torsion, Comptes Rendus hebdomadaires des Séances de l'Academie des Sciences 174, 593.

    Google Scholar 

  3. Sciama, D. W. (1958). On a Non-symmetric Theory of the Pure Gravitational Field, Proc. Camb. Philos. Soc. 54, 72.

    Google Scholar 

  4. Kibble, T. W. B. (1961). Lorentz Invariance and the Gravitational Field, J. Math. Phys. 2, 212.

    Google Scholar 

  5. Hehl, F. W., von der Heyde, P., Kerlick, G. D., and Nester, J. M. (1976). General Relativity with Spin and Torsion: Foundations and Prospects, Rev. Mod. Phys. 48, 393.

    Google Scholar 

  6. Hehl, F. W., McCrea, J. D., Mielke, E., and Neéman, Y. (1995). Metric-affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance, Phys. Rep. 258, 1.

    Google Scholar 

  7. Hayashi, K., and Shirafuji, T. (1979). New general relativity, Phys. Rev. D 19, 3524.

    Google Scholar 

  8. Drummond, I. T. (1985). Regge-Palatini Calculus, Nucl. Phys. B 273, 125.

    Google Scholar 

  9. Gronwald, F. (1995). Nonriemannian parallel transport in Regge Calculus, Class. Quantum Grav. 12, 1181.

    Google Scholar 

  10. Caselle, M., D'Adda, A., and Magnea, L. (1989). Regge Calculus as a Local Theory of the Poincaré Group, Phys. Lett. B 232, 457.

    Google Scholar 

  11. Sorkin, R. (1975). The electromagnetic field on a simplicial net, J. Math. Phys. 12, 2432.

    Google Scholar 

  12. Tod, K. P. (1994). Conical Singularities and Torsion, Class. Quantum Grav. 11, 1331.

    Google Scholar 

  13. Kondo, K. (1952). On the Geometrical and Physical Foundations of the Theory of Yielding, in Proceedings of the 2nd Japan National Congress for Applied Mechanics 41.

  14. Bilby, B. A., Bullough, R., and Smith, E. (1955). Continuous Distributions of Dislocations: A New Application of the Methods of Nonriemannian Geometry, Proc. Roy. Soc. Lond. A 231, 263.

    Google Scholar 

  15. Kröner, E. (1960).Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal. 4, 467.

    Google Scholar 

  16. Gairola, B. K. D. (1979). Nonlinear Elastic Problems, in Dislocations in Solids, Vol. 1, ed. F. R. N. Nabarro, North-Holland.

  17. Holz, A. (1988). Geometry and Action of Arrays of Disclinations in Crystals and Relation to (2 + 1)-dimensional Gravitation, Class. Quantum Grav. 5, 1259.

    Google Scholar 

  18. Holz, A. (1992). Topological Properties of Linked Disclinations and Dislocations in Solid Continua, J. Phys. A: Math. Gen. 25, L1.

    Google Scholar 

  19. Katanaev, M. O., and Volovich, I. V. (1992). Theory of Defects in Solids and Three-dimensional Gravity, Ann. Phys. 216, 1.

    Google Scholar 

  20. Kohler, C. (1995). Point Particles in (2 + 1) Dimensional Gravity as Defects in Solid Continua, Class. Quantum Grav. 12, L11.

    Google Scholar 

  21. Kohler, C. (1995). Line Defects in Solid Continua and Point Particles in (2 + 1) Dimensional Gravity, Class. Quantum Grav. 12, 2988.

    Google Scholar 

  22. Puntigam, R. A., and Soleng, H. H. (1997). Volterra Distortions, Spinning Strings, and Cosmic Defects, Class. Quantum Grav. 14, 1129.

    Google Scholar 

  23. Ren, H. C. (1988). Matter Fields in Lattice Gravity, Nucl. Phys. B 301, 661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J., Kohler, C. Torsion Degrees of Freedom in the Regge Calculus as Dislocations on the Simplicial Lattice. General Relativity and Gravitation 33, 1799–1807 (2001). https://doi.org/10.1023/A:1013031402382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013031402382

Navigation