Skip to main content
Log in

A Mechanism for Generation of the Solar Magnetic Field

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We apply the mathematical technique of quantum mechanics for studying the process of solar magnetic field generation under conditions where the viscosity is negligible and the rotation velocity of the medium is independent of time. It is assumed that the magnetic field is almost toroidal, axially nonsymmetric, and antisymmetric with respect to the equatorial plane.

We show that in the presence of an axisymmetric poloidal component of the hydrodynamic velocity and a radial gradient of the angular velocity of the medium, an oscillating solution growing in time exists for the field. The characteristic frequency of oscillations can exceed the rotation frequency if the rotation of the medium is nonuniform. In the case where the characteristic time of field growth amounts to 10 years, the radial velocity of the medium in the field-generation zone is approximately equal to 10 cm/sec. We also discuss briefly the problem of the existence of two field-generation zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. N. Parker, Cosmical Magnetic Fields [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  2. F. Krause and K.-H. Radler, Mean-Field Magnetohydrodynamics and Dynamo Theory [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  3. S. I. Vainshtein, Ya. B. Zel'dovich, and A. A. Ruzmaikin, Turbulent Dynamo in Astrophysics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  4. Yu.V. Vandakurov, Pis'ma v Astron. Zh., 25, 868 (1999).

    Google Scholar 

  5. Yu.V. Vandakurov, Astron. Zh., 76, 29 (1999).

    Google Scholar 

  6. Yu.V. Vandakurov, Astron. Zh., 78, 253 (2001).

    Google Scholar 

  7. Yu.V. Vandakurov, Pis'ma v Astron. Zh., 25, 143 (1999).

    Google Scholar 

  8. Yu.V. Vandakurov, Zh. Tekh. Fiz., 71, No. 6, 1 (2001).

    Google Scholar 

  9. R. Howard, Ann. Rev. Astron. Astrophys., 22, 131 (1984).

    Google Scholar 

  10. J. O. Stenflo, Astron. Astrophys., 210, 403 (1989).

    Google Scholar 

  11. J. Schou, H. M. Antia, S. Basu, et al., Astrophys. J., 505, 390 (1998).

    Google Scholar 

  12. E. E. Benevolenskaya and V. I. Makarov, Pis'ma v Astron. Zh., 18, 195 (1992).

    Google Scholar 

  13. E. E. Benevolenskaya, Astrophys. J. Lett., 509, 49 (1998).

    Google Scholar 

  14. I. Gonzάlez Hernάndez, J. Patrόn, R. S. Bogart, et al., Astrophys. J. Lett., 510, 153 (1999).

    Google Scholar 

  15. R. Howe, J. Christensen-Dalsgaard, F. Hill, et al., Science, 287, 2456 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandakurov, Y.V. A Mechanism for Generation of the Solar Magnetic Field. Radiophysics and Quantum Electronics 44, 678–685 (2001). https://doi.org/10.1023/A:1013002824400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013002824400

Keywords

Navigation