Skip to main content
Log in

Leptin Signal Transduction in the HP75 Human Pituitary Cell Line

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Leptin is an adipocyte-derived cytokine with many functions including signaling the status of body energy stores through activation of the leptin receptor (OB-R). Activation of the long form of OB-R (OB-Rb) results in JAK2 phosphorylation, activation of STATs, and subsequent gene expression. Activated STAT3 induces SOCS-3 expression in some cell types, which in turn down-regulates the JAK/STAT pathway. Although both leptin and OB-R are expressed in pituitary cells, the mechanism of signal transduction and its regulation in this organ has not been studied extensively. In these experiments we show that leptin reduces proliferation in a human pituitary cell line (HP75) and also increased apoptosis in these cells. Leptin also increased SOCS-3 mRNA and protein expression and tyrosine-phosphorylation in the HP75 human pituitary cell line. These findings suggest that SOCS-3 plays an important role in the inhibition of proximal leptin signal transduction in the anterior pituitary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–432.

    Google Scholar 

  2. Baskin DG, Hahn TM, Schwartz MW. Leptin sensitive neurons in the hypothalamus. Horm Metab Res 1999;31:345–350.

    Google Scholar 

  3. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269: 540–543.

    Google Scholar 

  4. Smith KS, O'Connor DM, De JJ, Lancey ED, Hassink SG, Funanage VL. Leptin expression in human mammary epithelial cells and breast milk. J Clin Endocrinol Metab 1998; 83:1810–1813.

    Google Scholar 

  5. Senaris R, Garcia CT, Casabiell X, Gallego R, Castro R, Considine RV, Dieguez C, Casanueva FF. Synthesis of leptin in human placenta. Endocrinology 1997;138:4501–4504.

    Google Scholar 

  6. Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, Nishimura H, Yoshimasa Y, Tanaka I, Mori T, Nakao K. Nonadipose tissue production of leptin: Leptin as a novel placenta-derived derived hormone in humans. Nat Med 1997;3:1029-1033.

    Google Scholar 

  7. Morash B, Li A, Murphy PR, Wilkinson M, Ur E. Leptin gene expression in the brain and pituitary gland. Endocrinology 1999;140:5995–5998.

    Google Scholar 

  8. Jin L, Burguera BG, Couce ME, Scheithauer BW, Lamsan J, Eberhardt NL, Kulig E, Lloyd RV. Leptin and leptin receptor expression in normal and neoplastic human pituitary: Evidence of a regulatory role for leptin on pituitary cell proliferation. J Clin Endocrinol Metab 1999;84:2903–2911.

    Google Scholar 

  9. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, et al. Identification and expression cloning of a leptin receptor, ob-r. Cell 1995;83:1263–1271.

    Google Scholar 

  10. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996;98:1101–1106.

    Google Scholar 

  11. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379:632–635.

    Google Scholar 

  12. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84: 491–495.

    Google Scholar 

  13. Bjørbÿk C, Uotani S, B. dS, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 1997;272:32686–32695.

    Google Scholar 

  14. Takahashi Y, Okimura Y, Mizuno I, Iida K, Takahashi T, Kaji H, Abe H, Chihara K. Leptin induces mitogen-activated protein kinase-dependent proliferation of c3h10t1/2 cells. J Biol Chem 1997;272:12897–12900.

    Google Scholar 

  15. Nakashima K, Narazaki M, Taga T. Overlapping and distinct signals through leptin receptor (ob-r) and a closely related cytokine signal transducer, gp130. FEBS Lett 1997;401: 49–52.

    Google Scholar 

  16. Banks AS, Davis SM, Bates SH, Myers MG, Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 2000;275:14563–14572.

    Google Scholar 

  17. Ghilardi N, Skoda RC. The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. Mol Endocrinol 1997;11:393–399.

    Google Scholar 

  18. Vaisse C, Halaas JL, Horvath CM, Darnell JJ, Stoffel M, Friedman JM. Leptin activation of stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996;14:95–97.

    Google Scholar 

  19. Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, Lai CF, Tartaglia LA. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci USA 1996;93:8374–8378.

    Google Scholar 

  20. Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC. Defective stat signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 1996;93:6231–6235.

    Google Scholar 

  21. Darnell JJ, Kerr IM, Stark GR. Jak-stat pathways and transcriptional activation in response to ifns and other extracellular signaling proteins. Science 1994;264:1415–1421.

    Google Scholar 

  22. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/jak/stat pathway. Biochem J 1998;334:297–314.

    Google Scholar 

  23. Shimon I, Yan X, Magoffin DA, Friedman TC, Melmed S. Intact leptin receptor is selectively expressed in human fetal pituitary and pituitary adenomas and signals human fetal pituitary growth hormone secretion. J Clin Endocrinol Metab 1998;83:4059–4064.

    Google Scholar 

  24. Mizuno I, Okimura Y, Takahashi Y, Kaji H, Abe H, Chihara K. Leptin stimulates basal and ghrh-induced gh release from cultured rat anterior pituitary cells in vitro. Kobe J Med Sci 1999;45:221–227.

    Google Scholar 

  25. Yu WH, Kimura M, Walczewska A, Karanth S, McCann SM. Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci USA 1997;94:1023–1028.

    Google Scholar 

  26. Nillni EA, Vaslet C, Harris M, Hollenberg AN, Bjørbÿk C, Flier JS. Leptin regulates prothyrotropin-releasing hormone (protrh) biosynthesis: Evidence for direct and indirect pathways. J Biol Chem 2000.

  27. Yu WH, Walczewska A, Karanth S, McCann SM. Nitric oxide mediates leptin-induced luteinizing hormone-releasing hormone (lhrh) and lhrh and leptin-induced lh release from the pituitary gland. Endocrinology 1997;138:5055–5058.

    Google Scholar 

  28. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy GB. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401.

    Google Scholar 

  29. Zamorano PL, Mahesh VB, De SL, Chorich LP, Bhat GK, Brann DW. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat. Neuroendocrinology 1997;65:223–228.

    Google Scholar 

  30. Cai A, Hyde JF. Upregulation of leptin receptor gene expression in the anterior pituitary of human growth hormone-releasing hormone transgenic mice. Endocrinology 1998;139:420–423.

    Google Scholar 

  31. Dieterich KD, Lehnert H. Expression of leptin receptor mRNA and the long form splice variant in human anterior pituitary and pituitary adenoma. Exp Clin Endocrinol Diabetes 1998;106:522–525.

    Google Scholar 

  32. Lin J, Barb CR, Matteri RL, Kraeling RR, Chen X, Meinersmann RJ, Rampacek GB. Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig. Domest Anim Endocrinol 2000;19:53–61.

    Google Scholar 

  33. Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A. Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor. Endocrinology 1992; 131:3110–3116.

    Google Scholar 

  34. Auernhammer CJ, Chesnokova V, Bousquet C, Melmed S. Pituitary corticotroph socs-3: Novel intracellular regulation of leukemia-inhibitory factor-mediated proopiomelanocortin gene expression and adrenocorticotropin secretion. Mol Endocrinol 1998;12:954–961.

    Google Scholar 

  35. Auernhammer CJ, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph socs-3 expression: Characterization of the murine socs-3 promoter. Proc Natl Acad Sci USA 1999;96:6964–6969.

    Google Scholar 

  36. Bousquet C, Susini C, Melmed S. Inhibitory roles for shp-1 and socs-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. J Clin Invest 1999;104: 1277–1285.

    Google Scholar 

  37. Jin L, Kulig E, Qian X, Scheithauer BW, Eberhardt NL, Lloyd RV. A human pituitary adenoma cell line proliferates and maintain some differential functions following expression of sv40 large t-antigen. Endocr Pathol 1998;9:168–184.

    Google Scholar 

  38. Morris TJ, Palm SL, Furcht LT, Buchwald H. The effect of lovastatin on [3h]thymidine uptake in htc-4 and llc-11 tumor cells. J Surg Res 1996;61:367–372.

    Google Scholar 

  39. Cohney SJ, Sanden D, Cacalano NA, Yoshimura A, Mui A, Migone TS, Johnston JA. Socs-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses stat5 phosphorylation and lymphocyte proliferation. Mol Cell Biol 1999; 19:4980–4988.

    Google Scholar 

  40. Ray DW, Ren SG, Melmed S. Leukemia inhibitory factor (lif) stimulates proopiomelanocortin (pomc) expression in a corticotroph cell line. Role of stat pathway. J Clin Invest 1996; 97:1852–1859.

    Google Scholar 

  41. Ray DW, Ren SG, Melmed S. Leukemia inhibitory factor regulates proopiomelanocortin transcription. Ann NY Acad Sci 1998;840:162–173.

    Google Scholar 

  42. Terstegen L, Gatsios P, Bode JG, Schaper F, Heinrich PC, Graeve L. The inhibition of interleukin-6-dependent stat activation by mitogen-activated protein kinases depends on tyrosine 759 in the cytoplasmic tail of glycoprotein 130. J Biol Chem 2000;275:18810–18817.

    Google Scholar 

  43. Schuringa JJ, Wierenga AT, Kruijer W, Vellenga E. Constitutive stat3, tyr705, and ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood 2000;95:3765–3770.

    Google Scholar 

  44. Garcia R, Yu CL, Hudnall A, Catlett R, Nelson KL, Smithgall T, Fujita DJ, Ethier SP, Jove R. Constitutive activation of stat3 in ~broblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ 1997;8: 1267–1276.

    Google Scholar 

  45. Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M, Miyajima A, Kitamura T. Identification and characterization of a constitutively active stat5 mutant that promotes cell proliferation. Mol Cell Biol 1998;18:3871–3879.

    Google Scholar 

  46. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE, Jr. Stat3 as an oncogene. Cell 1999;98:295–303.

    Google Scholar 

  47. Chen J, Sadowski HB, Kohanski RA, Wang LH. Stat5 is a physiological substrate of the insulin receptor. Proc Natl Acad Sci USA 1997;94:2295–2300.

    Google Scholar 

  48. Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S. Stat3 activation is responsible for il-6-dependent t cell proliferation through preventing apoptosis: Generation and characterization of t cell-specific stat3-deficient mice. J Immunol 1998;161:4652–4660.

    Google Scholar 

  49. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T. Stat5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. Embo J 1999;18:4754–4765.

    Google Scholar 

  50. Bowman T, Garcia R, Turkson J, Jove R. Stats in oncogenesis. Oncogene 2000;19:2474–2488.

    Google Scholar 

  51. Duval D, Reinhardt B, Kedinger C, Boeuf H. Role of suppressors of cytokine signaling (socs) in leukemia inhibitory factor (lif)-dependent embryonic stem cell survival. Faseb J 2000;14:1577–1584.

    Google Scholar 

  52. Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 waf1/cip1 mediated by stat1. Science 1996;272: 719–722.

    Google Scholar 

  53. Bellido T, O'Brien CA, Roberson PK, Manolagas SC. Transcriptional activation of the p21(waf1, cip1, sdi1) gene by interleukin-6 type cytokines. A prerequisite for their prodifferentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 1998;273:21137–21144.

    Google Scholar 

  54. Matsumura I, Ishikawa J, Nakajima K, Oritani K, Tomiyama Y, Miyagawa J, Kato T, Miyazaki H, Matsuzawa Y, Kanakura Y. Thrombopoietin-induced differentiation of a human megakaryoblastic leukemia cell line, cmk, involves transcriptional activation of p21(waf1/cip1) by stat5. Mol Cell Biol 1997;17:2933–2943.

    Google Scholar 

  55. Kortylewski M, Heinrich PC, Mackiewicz A, Schniertshauer U, Klingmuller U, Nakajima K, Hirano T, Horn F, Behrmann I. Interleukin-6 and oncostatin m-induced growth inhibition of human a375 melanoma cells is stat-dependent and involves upregulation of the cyclin-dependent kinase inhibitor p27/kip1. Oncogene 1999;18:3742–3753.

    Google Scholar 

  56. Kulig E, Jin L, Qian X, Horvath E, Kovacs K, Stefaneanu L, Scheithauer BW, Lloyd RV. Apoptosis in nontumorous and neoplastic human pituitaries: Expression of the bcl-2 family of proteins. Am J Pathol 1999;154:767–774.

    Google Scholar 

  57. Oka H, Jin L, Kulig E, Scheithauer BW, Lloyd RV. Pituitary adenylate cyclase-activating polypeptide inhibits transforming growth factor-beta1-induced apoptosis in a human pituitary adenoma cell line. Am J Pathol 1999;155:1893–1900.

    Google Scholar 

  58. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997;9:180–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsumanuma, I., Jin, a., Zhang, S. et al. Leptin Signal Transduction in the HP75 Human Pituitary Cell Line. Pituitary 3, 211–220 (2000). https://doi.org/10.1023/A:1012994712851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012994712851

Navigation