Skip to main content
Log in

Is provitamin D a UV-B receptor in plants?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

An hypothesis is presented that provitamin D (dehydrocholesterol and/or ergosterol) can act as a UV-B receptor in plants and algae. We also propose that the proportions between provitamins D, previtamins D, and vitamins D (D2 and D3), after calibration, can be used to evaluate UV-B exposure of phytoplankton and terrestrial vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arami, S., Hada, M. & Tada, M. 1997a. Near-UV-induced absorbance change and photochemical decomposition of ergosterol in the plasma membrane of the yeast Saccharomyces cerevesiae. Microbiology 143: 1665–1671.

    Google Scholar 

  • Arami, S., Hada, M. & Tada, M. 1997b. Reduction of ATPase activity accompanied by photodecomposition of ergosterol by near-UV irradiation in plasma membranes prepared from Saccharomyces cerevesiae. Microbiology 143: 2465–2471.

    Google Scholar 

  • Beggs, C. J. & Wellmann, E. 1994. Photocontrol of flavonoid biosynthesis. pp. 733–751. In: Kendrick, R. E. & Kronenberg, G. H. M. (eds), Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Björn, L. O. 1999. UV-B effects: Receptors and targets. pp. 793–803. In: Singhal, G. S. et al. (eds), Concepts of Photobiology. Narosa Publishing House, New Delhi.

    Google Scholar 

  • Buchala, A. J. & Schmid, A. 1979. Vitamin D and its analogues as a new class of plant growth substances affecting rhizogenesis. Nature 280: 230–231.

    Google Scholar 

  • Buchala, A. J. & Pythoud, F. 1988. Vitamin D and related compounds as plant growth substances. Physiol. Plant. 74: 391–396.

    Google Scholar 

  • Buddecke, E. 1980. Grundriss der Biochemie (6. Aufl.). W. De Gruyter, Berlin.

    Google Scholar 

  • Buffenstein, R., Skinner, D. C., Yahav, S. D., Moodley, G. P., Cavaleros, M., Zachen, D., Ross, F. P. & Pettifor, J. M. 1991. Effect of oral cholecalciferol supplementation at physiological and supraphysiological doses in naturally vitamin D3 deficient subterranean damara mole rats (Cryptomys damarensis). J. Endocrinol. 131: 197–202.

    Google Scholar 

  • Cheplick, G. P. & Clay, K. 1988. Acquired chemical defenses of grasses: the role of fungal endophytes. Oikos 52: 309–318.

    Google Scholar 

  • Clay, K. 1990. Fungal endophytes of grasses. Annu. Rev. Ecol. Syst. 21: 275–297.

    Google Scholar 

  • Curino, A., Skliar, M. & Boland, R. 1998. Identification of 7-dehydrocholesterol, vitamin D3, 25(OH)-vitamin D3 and 1,25(OH)2-vitamin D3 in Solanum glaucophyllum cultures grown in absence of light. Biochim. Biophys. Acta 1425: 485–492.

    Google Scholar 

  • Feldman, D., Glorieux, F. H. & Pike, J. W. (eds) 1997. Vitamin D. Academic Press, New York.

    Google Scholar 

  • Fries, L. 1984. D-vitamins and their precursors as growth regulators in axenically cultivated marine macroalgae. J. Phycol. 20: 62–66.

    Google Scholar 

  • Galkin, O. N. & Terenetskaya, I.P. 1999.'Vitamin D' biodosimeter: basic characteristics and potential applications. J. Photochem. Photobiol. B: Biol. 53: 12–19.

    Google Scholar 

  • Gershengorn, M. C., Smith, A. R. H., Goulston, G., Goad, L. J., Goodwon, T. W. & Haines, T. H. 1968. The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry 7: 1698–1706.

    Google Scholar 

  • Gessner, M. O. & Schmitt, A. J. 1996. Use of solid-phase extraction to determine ergosterol concentrations in plant tissue colonized by fungi. Appl. Environ. Microbiol. 62: 415–419.

    Google Scholar 

  • Grandmougin-Ferjani, A., Schuler-Muller, I. & Hartmann, M.-A. 1997. Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol. 113: 163–174.

    Google Scholar 

  • Hannach, G. & Sigleo, A. C. 1998. Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Mar. Ecol. Progr. Ser. 174: 207–222.

    Google Scholar 

  • Havinga, E. 1973. Vitamin D, example and challenge. Experientia 29: 1181–1193.

    Google Scholar 

  • Hess, A. F. & Weinstock, M. 1924. Antirachitic properties imparted to inert fluids and green vegetables by ultraviolet radiation. J. Biol. Chem. 62: 301–313.

    Google Scholar 

  • Holick, M. F. 1989. Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans. pp. 7–43. In: Pang, P. K. T. & Schreibman, M. P. (eds), Vertebrate Endocrinology: Fundamentals and Biomedical Implications, volume 3. Regulation of Calcium and Phosphate. Academic Press, New York.

    Google Scholar 

  • Holick, M. F. (ed.) 1999. Vitamin D: Molecular Biology, Physiology, and Clinical Applications (Nutrition and Health). Humana Press, Totowa, NJ 07512.

    Google Scholar 

  • Horst R. L., Reinhardt T. A., Russell J. R. & Napoli J. L. 1984. The isolation of vitamin D2 and vitamin D3 from Medicago sativa (alfalfa plant). Arch. Biochem. Biophys. 231: 67–71.

    Google Scholar 

  • Hsiao, K. C. & Björn, L. O 1982. Aspects of photoinduction and carotenogenesis in the fungus Verticillium agaricinum. Physiologia Plantarum 54: 235–238.

    Google Scholar 

  • Imbrie, C.W. & Murphy, T.M. 1982. UV-action spectrum (254–405 nm) for inhibition of a K+-stimulated adenosine triphosphatase from the plasma membrane of Rosa damascena. Photochem. Photobiol. 36: 537–542.

    Google Scholar 

  • Imbrie, C. W. & Murphy, T. M. 1984. Photoinactivation of detergent-solubilized plasma membrane ATPase from Rosa damascena. Plant Physiol. 74: 617–621.

    Google Scholar 

  • Jarvis, B. C. & Booth, A. 1981. Influence of indole-butyric acid, boron, myo-inositol, vitamin D2 and seedling age on adventitious root developmant in cuttings of Phaseolus aureus. Physiol. Plant. 53: 213–218.

    Google Scholar 

  • MacLaughlin, J. A., Anderson, R. R. & Holick, M. F. 1982. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 216: 1001–1003.

    Google Scholar 

  • Mellanby, E. 1918. The part played by an 'accessory factor' in the production of experimental rickets. J. Physiol. (London) 52: 11–14.

    Google Scholar 

  • Moncousin, C. & Gaspar, T. 1983. Peroxidase as a marker for rooting improvement of Cynara scolymus L. cultured in vitro. Biochem. Physiol. Pflanzen178: 263–271.

    Google Scholar 

  • Napoli J. L., Reeve L. E., Eisman J. A., Schnoes, H. K. & DeLuca, H. F. 1977. Solanum glaucophyllum as source of 1,25-dihydroxyvitamin D3. J. Biol. Chem. 252: 2580–2583.

    Google Scholar 

  • Nevo, E. 1995. Mammalian evolution underground. The ecologicalgenetic-phenetic interfaces. Acta Theriologica, Suppl. 3: 9–31.

    Google Scholar 

  • Newsham, K. K., Lewis, G. C., Greenshade, P. D. & McLeod, A. R. 1998. Neotyphodium lolii, a fungal endophyte, reduces the fertility of Lolium perenne exposed to elevated UV-B radiation. Ann. Bot. 81: 397–403.

    Google Scholar 

  • Norman, T. C., Norman, A. W. 1993. Consideration of chemical mechanisms for the nonphotochemical production of vitamin D3 in biological systems. Bioorganic Med. Chem. Lett. 3: 1785–1788.

    Google Scholar 

  • Patterson, G.W. 1971. The distribution of sterols in algae. Lipids 6: 120–127.

    Google Scholar 

  • Patterson, G. W. 1974. Sterols of some green algae. Comparative Biochem. Physiol. 47B: 453–457.

    Google Scholar 

  • Pfoerter, K. & Weber, J. P. 1972. Photochemie der Vitamin D-Reihe. I. Kinetik und Quantenausbeuten der Ergosterinbestrahlung bei L=253,4 nm. Helvetica Chimica Acta 55: 921–937.

    Google Scholar 

  • Pitcher, T. & Buffenstein, R. 1995. Intestinal calcium transport in mole-rats (Cryptomys damarensis and Heterocephalus glaber) is independent of both genomic and non-genomic vitamin D mediation. Exp. Physiol. 80: 597–608.

    Google Scholar 

  • Pitcher, T., Buffenstein, R., Keegan, J. D., Moodley, G. P. & Yahav, S. 1992. Dietary calcium content, calcium balance and mode of uptake in a subterranean mammal, the damara mole-rat. J. Nutrition 122: 108–114.

    Google Scholar 

  • Pitcher, T., Sergeev, I. N. & Buffenstein, R. 1994. Vitamin D metabolism in the damara mole-rat is altered by exposure to sunlight, yet mineral metabolism is unaffected. J. Endocrinolol. 143: 367–374.

    Google Scholar 

  • Pitcher, T., Pettifor, J. M. & Buffenstein, R. 1994. The effect of dietary calcium content and oral vitamin D3 supplementation on mineral homeostasis in a subterranean mole-rat, Cryptomys damarensis. Bone Mineral. 27: 145–157.

    Google Scholar 

  • Portwich, A. & Garcia-Pichel, F. 2000. A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochem. Photobiol. 71: 493–498.

    Google Scholar 

  • Pottier, R. H. & Russell, D. A. 1991. Quantum yield of a photochemical reaction. pp. 45–57. In: Valenzano, D. P., Pottier, R. H., Mathis, P., Douglas, R. H. (eds) Photobiological Techniques. Plenum Press, New York, pp. xiv+381.

    Google Scholar 

  • Prema, T. P. & Raghuramulu, N. 1994. Free vitamin D3 metabolites in Cestrum diurnum leaves. Phytochemistry 37: 677–681.

    Google Scholar 

  • Prema, T. P. & Raghuramulu, N. 1996. Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 42: 617–620.

    Google Scholar 

  • Rambeck W. A., Kreutzberg O., Bruns-Droste C. & Zucker, H. 1981. Vitamin D-like activity of Trisetum flavescens. Z. Pflanzenphysiol. 104: 9–16.

    Google Scholar 

  • Redlin, S. C. & Carris, L. M. (eds) 1996. Endophytic fungi in grasses and woody plants: Systematics, ecology and evolution. The American Phytopathological Association (APS Press), St. Paul, Minnesota.

    Google Scholar 

  • Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A.-M., Beneviste, P. & Hartmann, M.-A. 1991. Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc. Nat. Acad. Sci. USA 88: 6926–6930.

    Google Scholar 

  • Siegel, M. C., Latch, G. C.M. & Johnson, M. C. 1987. Fungal endophytes of grasses. Annu. Rev. Phytopathol. 25: 293–315.

    Google Scholar 

  • Steenbock, H. & Black, A. 1924. The induction of growthpromoting and calcifying properties in a ration by exposure to ultra-violet light. J. Biol. Chem. 61: 405–422.

    Google Scholar 

  • Stern, A. I., Schiff, J. A. & Klein, H. P. 1960. Isolation of ergosterol from Euglena gracilis; distribution among mutant strains. J. Protozool. 7: 52–55.

    Google Scholar 

  • Sugisaki, N., Welcher, M. & Monder, C. 1974. Lack of vitamin D3 synthesis by goldfish (Carassius auratus L.). Comp. Biochem. Physiol. 49B: 647–653.

    Google Scholar 

  • Sunita Rao, D. & Raghuramulu, N. 1996a. Food chain as origin of vitamin D in fish. Comp. Biochem. Physiol. 114A: 15–19.

    Google Scholar 

  • Sunita Rao, D. & Raghuramulu, N. 1996b. Lack of vitamin D3 synthesis in Tilapia mossambica from cholesterol and acetate. Comp. Biochem. Physiol. 114A: 21–25.

    Google Scholar 

  • Wasserman R. H. 1975. Vitamin D-like substances in Solanum malacoxylon and other calcinogenic plants. Nutr. Rev. 33: 1–5.

    Google Scholar 

  • Wasserman, R. H., Henion, J. D., Haussler, M. R. & McCain, T. A. 1976. Calcinogenic factor in Solanum malacoxylon: Evidence that it is 1,25-dihydroxyvitamin D3-glycoside. Science 194: 853–855.

    Google Scholar 

  • Webb, A. R., Kline, L. & Holick, M. F. 1988. Influence of season and latitude on on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metabolism 67: 373–378.

    Google Scholar 

  • Zucker, H., Stark, H. & Rambeck, W. 1980. Light-dependent synthesis of cholecalciferol in a green plant. Nature 283: 68–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björn, L.O., Wang, T. Is provitamin D a UV-B receptor in plants?. Plant Ecology 154, 1–8 (2001). https://doi.org/10.1023/A:1012985924283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012985924283

Navigation