Skip to main content
Log in

Effects of Hypoxic Hypoxia on the Spontaneous Electrical Activity of the Human Brain

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

An attempt was made to reveal the mechanisms of adaptation of the human brain to fractional hypoxic load. With this in mind, the dynamics of spontaneous EEG was studied in a 10% hypoxic test performed before and after a course of normobaric hypoxic training. It was shown that under acute hypoxic conditions, the electrical activity of the brain is switched from the α-range frequencies to the generation of medium-amplitude slow-wave oscillations predominantly of the Δ range. This condition of electrogenesis is of a stable character and does not change upon external photostimulation. The training course of hypoxic therapy increases the EEG changes that are revealed. The switch to the generation of slow-wave medium-amplitude oscillations is likely to reflect the adaptation changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Meerson, F.Z., Tverdokhlib, V.P., Boev, V.M., and Frolov, B.A., Adaptatsiya k periodicheskoi gipoksii v terapii i profilaktike (Adaptation to Periodic Hypoxia in Therapy and Prophylaxis), Moscow: Nauka, 1989, p. 5.

    Google Scholar 

  2. Karash, Yu.M., Strelkov, R.B., and Chizhov, A.Ya., Normobaricheskaya gipoksiya v lechenii, profilaktike i reabilitatsii (Normobaric Hypoxia in Treatment, Prophylaxis, and Rehabilitation), Moscow: Nauka, 1988, p. 243.

    Google Scholar 

  3. Sapova, N.I. and Ivanov, A.O., An Increase in Mental Working Capacity of Healthy Individuals and Patients with Neurocirculatory Dystonia by Normobaric Hypoxic Training, Morsk. Med. Zh., 1998, vol. 5, no. 3, p. 17.

    Google Scholar 

  4. Zabolotnykh, V.A., Komantsev, V.N., and Povorinskii, A.G., Prakticheskii kurs klassicheskoi klinicheskoi elektroentsefalografii (Practical Course of Classical Clinical Electroencephalography), St. Petersburg: Petro-RIF, 1998, p. 31.

    Google Scholar 

  5. Zenkov, L.R. and Ronkin, M.A., Funktsional'naya diagnostika nervnykh boleznei (Functional Diagnosis of Nervous Diseases), Moscow: Meditsina, 1991, p. 22.

    Google Scholar 

  6. Shostak, V.I. and Stepanyan, E.B., The Relationship between the Spectral Electroencephalogram Composition and the Parameters of Intermittent Photostimulation, Fiziol. Chel., 1985, vol. 13, no. 4, p. 681.

    Google Scholar 

  7. Lakin, G.F., Biometriya (Biometry), 4th edition, Moscow: Vysshaya Shkola, 1990, p. 52.

    Google Scholar 

  8. Danilova, N.N., Psikhofiziologiya (Psychophysiology), Moscow: Aspektpress, 1998, p. 73.

    Google Scholar 

  9. Kawahara, N., Rentreer, C., and Klatro, I., Protective Effect of Spreading Depression against Neuronal Damage following Cardiac Arrest Cerebral Ischemia, Neurol. Res., 1995, vol. 17, p. 9.

    Google Scholar 

  10. Buresh, Ya., Koroleva, V.I., Koroleva, O.S., and Maresh, V., Shifts in Constant Potential in Rat Brain Structures in Focal Ischemia and Systemic Hypoxia, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1998, vol. 48, no. 4, p. 640.

    Google Scholar 

  11. Gora, E.P. and Mamin, V.B., Physiological Effects of Voluntary Breath Holding in Children and Adolescents, Fiziol. Chel., 1998, vol. 24, no. 1, p. 46.

    Google Scholar 

  12. Leutin, V.G., Platonov, V.G., Divert, G.M., et al., Inversion of Hemispherical Dominance as a Psychophysiological Mechanism of Interval Hypoxic Training, Fiziol. Chel., 1999, vol. 25, no. 3, p. 65.

    Google Scholar 

  13. Miles, A.W. and Knuckey, N.W., Apoptic Neuronal Death following Cerebral Ischemia, J. Clin. Neurosci., 1998, vol. 5, no. 2, p. 125.

    Google Scholar 

  14. Ukhtomskii, A.A., Izbrannye trudy (Selected Works), Leningrad: Nauka, 1978, p. 34.

    Google Scholar 

  15. Rusinov, V.S., Dominanta: elektrofiziologicheskoe issledovanie (The Dominant: Electrophysiological Study), Moscow: Medgiz, 1969, p. 23.

    Google Scholar 

  16. Moruzzi, G. and Magoun, H.W., Brain-Stem Reticular Formation and Activated EEG, Electroencephalogr. Clin. Neurophysiol., 1949, vol. 1, no. 3, p. 455.

    Google Scholar 

  17. Longo, V.G., Behavioral and Electroencephalographic Effects of Atropine and Related Compounds, Pharmacol. Rev., 1966, vol. 18, no. 2, p. 965.

    Google Scholar 

  18. Gusel'nikov, V.I., Elektrofiziologiya golovnogo mozga (Electrophysiology of the Brain), Moscow: Vysshaya Shkola, 1976, p. 82.

    Google Scholar 

  19. Leao, A.A.P., Spreading Depression of Activity in Cerebral Cortex, J. Neurophysiol., 1944, vol. 7, p. 359.

    Google Scholar 

  20. Nedergaard, M. and Hansen, A.J., Spreading Depression Is Not Associated with Neuronal Injury in the Normal Brain, Brain Res., 1988, vol. 449, p. 395.

    Google Scholar 

  21. Roitbak, A.I., Physiology of the Neuroglia, in Obshchaya fiziologiya nervnoi sistemy (General Physiology of the Nervous System), Leningrad: Nauka, 1979, p. 607.

    Google Scholar 

  22. Kimura, M. and Makoto, S., Protective Effect of a Low Dose of Colchicine on the Delayed Cell Death of Hippocampal CA1 Neurons following Transient Forebrain Ischemia, Brain Res., 1997, vol. 774, nos. 1-2, p. 229.

    Google Scholar 

  23. Siegel, J.M., Mechanisms of Sleep Control, J. Clin. Neurophysiol., 1990, vol. 7, no. 1, p. 49.

    Google Scholar 

  24. Steriade, M., Gloor, P., Llinas, R.R., et al., Basic Mechanisms of Cerebral Rhythmic Activities, Electroencephalogr. Clin. Neurophysiol., 1990, vol. 7, no. 6, p. 481.

    Google Scholar 

  25. Pavlov, I.P., Dvadtsatiletnii opyt ob”ektivnogo izucheniya vysshei nervnoi deyatel'nosti (povedeniya) zhivotnykh-uslovnye refleksy (A 20-year Experience of the Objective Study of Higher Nervous Activity (Behavior) of Animals-Conditioned Reflexes), vol. 3, Polnoe sobranie trudov I.P. Pavlova (Complete Collection of Works by I.P. Pavlov), Moscow-Leningrad: Izd. Akad. Nauk SSSR, 1949, p. 304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, M.V., Ivanov, A.O., Kosenkov, N.I. et al. Effects of Hypoxic Hypoxia on the Spontaneous Electrical Activity of the Human Brain. Human Physiology 27, 698–702 (2001). https://doi.org/10.1023/A:1012981127647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012981127647

Keywords

Navigation