Skip to main content
Log in

Nonequilibrium Thermodynamics of Autowaves of Laminar Combustion

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Within the framework of the Zel'dovich–Frank‐Kamenetskii theory of thermal propagation of flame, thermodynamic properties of an open nonlinear system are considered, and nonequilibrium entropy of a steady combustion wave is constructed. The nonequilibrium dynamic system is analyzed qualitatively and quantitatively, and the distribution functions of local entropy production in terms of the spatial variable are constructed. It is shown that total entropy production in the system is a functional on integral curves that possess extreme properties, and its minimum corresponds to a unique physically sustainable solution of the problem. The procedure of “cutting” (vanishing) of the reaction rate is justified by methods of nonequilibrium thermodynamics. A variational formulation of the problem is presented for calculation of a steady combustion wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Vasil'ev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. R. A. Fisher, "The wave of advance of advantageous genes," Ann. Eugenics, 7, 335–369 (1937).

    Google Scholar 

  3. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, "Investigation of the diffusion equation combined with an increase in the amount of the substance, and the use of this equation in one biological problem," Byul. Mosk. Gos. Univ., 1, Ser. A, No. 6, 1–26 (1937).

    Google Scholar 

  4. Ya. B. Zel'dovich and D. A. Frank-Kamenetskii, "Theory of uniform propagation of ame," Dokl. Akad. Nauk SSSR, 19, No. 9, 693–697 (1938).

    Google Scholar 

  5. Ya. B. Zel'dovich and D. A. Frank-Kamenetskii, "Theory of thermal propagation of ame," Zh. Fiz. Khim., 12, No. 1, 100–105 (1938).

    Google Scholar 

  6. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations, Wiley Intersciences, New York (1971).

    Google Scholar 

  7. L. Onsager, "Reciprocal relations in irreversible processes. I," Phys. Rev., 37, 405–426 (1931).

    Google Scholar 

  8. L. Onsager, "Reciprocal relations in irreversible processes. II," Phys. Rev., 38, 2265–2279 (1931).

    Google Scholar 

  9. I. Dyarmati, Non-Equilibrium Thermodynamics. Field Theory and Variational Principles, Springer-Verlag, Berlin-Heidelberg-New York (1970).

    Google Scholar 

  10. I. P. Vyrodov, "Variational principles of phenomenological thermodynamics of irreversible processes in the aspect of a closed system of axioms," Zh. Fiz. Khim., 56, No. 6, 1329–1342 (1982).

    Google Scholar 

  11. I. P. Vyrodov, "Extreme properties of nonequilibrium thermodynamic systems and their dissipative functionals," Zh. Fiz. Khim., 62, No. 4, 865–882 (1988).

    Google Scholar 

  12. I. P. Vyrodov, "Generalization of the Onsager theorem and construction of nonequilibrium entropy in nonlinear phenomenological thermodynamics of irreversible processes," Zh. Fiz. Khim., 72, No. 2, 225–228 (1998).

    Google Scholar 

  13. A. P. Gerasev, "Nonequilibrium thermodynamics of propagation of heat waves in a catalytic bed," Dokl. Ross. Acad. Nauk, 359, No. 4, 495–498 (1998).

    Google Scholar 

  14. A. P. Gerasev, "Nonequilibrium thermodynamics of heat waves in a catalytic bed. Functional of an autowave solution," Fiz. Goreniya Vzryva, 36, No. 3, 51–59 (2000).

    Google Scholar 

  15. A. P. Gerasev, "Propagation of heat waves in a catalytic bed upon oxidation of sulphur dioxide," Zh. Fiz. Khim., 74, No. 7, 1174–1180 (2000).

    Google Scholar 

  16. A. I. Karpov, "Minimal entropy production as an approach to the prediction of the stationary rate of ame propagation," J. Non-Equilib. Thermodyn., 17, No. 1, 1–9 (1992).

    Google Scholar 

  17. Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985).

    Google Scholar 

  18. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  19. I. Prigogine and R. Defei, Chemical Thermodynamics, Longmans-Green, London-New York-Toronto (1954).

    Google Scholar 

  20. A. P. Aldushin, V. D. Lugovoi, A. G. Merzhanov, and B. I. Khaikin, "Degeneration conditions for a steady combustion wave," Dokl. Akad. Nauk SSSR, 243, No. 6, 1434–1437 (1978).

    Google Scholar 

  21. A. G. Merzhanov and B. I. Khaikin, Theory of Combustion Waves in Homogeneous Media [in Russian], Inst. of Struct. Macrokinetics, Russian Acad. of Sci., Chernogolovka (1992).

    Google Scholar 

  22. A. P. Aldushin, Ya. B. Zel'dovich, and S. I. Khudyaev, "Numerical investigation of ame propagation in a mixture reacting at the initial temperature," Fiz. Goreniya Vzryva, 15, No. 6, 20–27 (1979).

    Google Scholar 

  23. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  24. N. N. Bautin and E. A. Leontovich, Methods and Procedures of Qualitative Investigation of Dynamic Systems on a Plane [in Russian], Nauka, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasev, A.P. Nonequilibrium Thermodynamics of Autowaves of Laminar Combustion. Combustion, Explosion, and Shock Waves 37, 626–633 (2001). https://doi.org/10.1023/A:1012967811989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012967811989

Keywords

Navigation