Skip to main content
Log in

Acoustooptical Spectral Processing of Radar Signals Taking into Account the Signal Spectra of Local Heterodyne and Optical Radiation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We describe the formation of a radio signal designed for acoustooptical processing based on the radar signal analyzed which is characterized by a spectrum, a heterodyne signal with a spectrum of known structure, and a mixer. The signal formed fits the working frequency of the acoustooptical cell. In the cell, the signal produces a traveling acoustic wave due to propagating inhomogeneities of the dielectric constant or refractive index. Within the framework of physical optics, we consider how the acoustooptical cell used for processing the signal works in the regime of the Raman–Nath diffraction. The cell is illuminated by quasimonochromatic radiation of known arbitrary spatial and spectrum structures. One works in the first and higher diffraction orders. Using an original method proposed earlier, we analyze the functioning of the acoustooptical cell in the Bragg diffraction regime at small radiation transformation coefficients. The description is done for a probing signal of known spatial and spectrum structures. The method of acoustooptical analysis of the spectrum structure of a radio signal or radar signal is considered under the decreased influence of the spectra of the probing optical radiation and heterodyne signal. The effect of the spectrum structure of the probing radiation used when processing the radio signal which propagates within the acoustooptical cell is studied in complete analogy with taking into account the exciting radiation spectrum in spectroscopy. For signals with a low level of noise, we use the method based on the Fourier transformation of the intensity distribution registered and on that of the intensity distribution of the initial probing radiation spectrum. Effects of the width and spectrum structure of the heterodyne can also be taken into account similar to the method of excluding the spread function used in investigating spectrograms. The processing uses Fourier transforms of the registered spectrum intensity distribution and of the known spectrum intensity distribution of the heterodyne signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Astanin and A. A. Kostylev, Principles of Wide Band Radar Measurements [in Russian], Radio i Svyaz', Moscow (1989).

    Google Scholar 

  2. Yu. G. Sosulin, Theoretical Principles of Radio Location and Radio Navigation [in Russian], Radio i Svyaz', Moscow (1992).

    Google Scholar 

  3. B. V. Bunkin and V. A. Kashin, Radiotekhnika, 4–5, 128 (1995).

    Google Scholar 

  4. V. G. Radzievsky and P. A. Trifonov, Radiotekhnika, 6, 69 (1999).

    Google Scholar 

  5. V. G. Radzievsky and P. A. Trifonov, Radiotekhnika, 6, 39 (2000).

    Google Scholar 

  6. V. A. Zubov and T. T. Sultanov, Proc. SPIE, 213, 50 (1980).

    Google Scholar 

  7. A. V. Kraisky, T. T. Sultanov, and V. A. Zubov, “Processing of Optical Information Using the Two-Channel Interferometer,” in: Holographic processing of Information with Use of Nonstationary Fields [in Russian], Proceedings of the P. N. Lebedev Physical Institute, Nauka, Moscow (1982), Vol. 131, p. 3.

    Google Scholar 

  8. M. V. Dyakonov, T. F. Faizullov, V. A. Zubov, et al., Kvantovaja Élektron., 23, 667 (1996).

    Google Scholar 

  9. M. V. D'yakonov, T. F. Faizullov, T. T. Sultanov, et al., J. Russ. Laser Res., 18, 125 (1997).

    Google Scholar 

  10. S. V. Kulakov, Acoustooptical Devices for Spectral and Correlation Analysis of Signals [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  11. G. E. Korbukov and S. V. Kulakov (eds.), Acoustooptical Methods of Processing Information [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  12. A. P. Beloshicky, V. M. Komarov, B. P. Krekoten', et al., Zarubezhnaya Radioélectronika, 3, 51 (1981).

    Google Scholar 

  13. S. V. Kulakov (ed.), Acoustoelectronical and Acoustooptical Methods of Radio Signal Processing [in Russian], Nauka, Leningrad (1983).

    Google Scholar 

  14. W. T. Rhodes and P. S. Guilfoyle, Proc. IEEE, 72, 820 (1984).

    Google Scholar 

  15. S. V. Kulakov (ed.), Acoustooptical Devices in Radioelectronic Systems [in Russian], Nauka, Leningrad (1988).

    Google Scholar 

  16. O. B. Gusev, S. V. Kulakov, B. N. Razzhivin, et al., Real Time Optical Processing of Signals [in Russian], Radio i Svyaz', Moscow (1989).

    Google Scholar 

  17. J. N. Lee and A. VanderLugt, Proc. IEEE, 77, 1528 (1989).

    Google Scholar 

  18. E. T. Aksenov, M. G. Vysotsky, V. P. Karasik, et al., Avtometriya, 1, 78 (2000).

    Google Scholar 

  19. N. N. Evtikhiev, O. A. Evtikhieva, I. N. Kompanets, et al., Information Optics [in Russian], Moscow Power Engineering Institute, Moscow (2000).

    Google Scholar 

  20. M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  21. C. V. Raman and N. S. N. Nath, The Diffraction of Light by High Frequency Sound Waves, Proc. Indian Acad. Sci., 2A (1935), 3A (1936).

  22. H. G. Cohen and E. I. Gordon, Bell. Syst. Tech. J., 44, 693 (1965).

    Google Scholar 

  23. H. Kogelnik, Bell. Syst. Tech. J., 49, 2909 (1969).

    Google Scholar 

  24. A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  25. L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  26. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  27. A. N. Tikhonov and A. A. Samarsky, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  28. T. I. Kuznetsova and V. A. Zubov, Actes du 10-eme Congres International du Cinematographie Ultra-Rapid, 35, 218 (1973).

    Google Scholar 

  29. V. A. Zubov, Physical Principles of Holography [in Russian], Moscow Power Engineering Institute, Moscow (1978).

    Google Scholar 

  30. F. Sommerfeld, Optik, Wiesbaden (1950).

  31. V. I. Malyshev, Introduction to Experimental Spectroscopy [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  32. V. V. Lebedeva, Optical Spectroscopy Technology [in Russian], M. V. Lomonosov Moscow State University, Moscow (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkin, A.A., Sultanov, T.T. & Zubov, V.A. Acoustooptical Spectral Processing of Radar Signals Taking into Account the Signal Spectra of Local Heterodyne and Optical Radiation. Journal of Russian Laser Research 22, 561–583 (2001). https://doi.org/10.1023/A:1012966317015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012966317015

Keywords

Navigation