Skip to main content
Log in

Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

We describe SC complements and results from comparative genomic hybridization (CGH) on mitotic and meiotic chromosomes of the zebrafish Danio rerio, the platyfish Xiphophorus maculatus and the guppy Poecilia reticulata. The three fish species represent basic steps of sex chromosome differentiation: (1) the zebrafish with an all-autosome karyotype; (2) the platyfish with genetically defined sex chromosomes but no differentiation between X and Y visible in the SC or with CGH in meiotic and mitotic chromosomes; (3) the guppy with genetically and cytogenetically differentiated sex chromosomes. The acrocentric Y chromosomes of the guppy consists of a proximal homologous and a distal differential segment. The proximal segment pairs in early pachytene with the respective X chromosome segment. The differential segment is unpaired in early pachytene but synapses later in an ‘adjustment’ or ‘equalization’ process. The segment includes a postulated sex determining region and a conspicuous variable heterochromatic region whose structure depends on the particular Y chromosome line. CGH differentiates a large block of predominantly male-specific repetitive DNA and a block of common repetitive DNA in that region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albini S, Jones G, Wallace B (1984) A method for preparing two-dimensional surface-spreads of synaptonemal complexes from plant meiocytes for light and electron microscopy. Exp Cell Res 152: 280–285.

    Article  PubMed  CAS  Google Scholar 

  • Almeida-Toledo LF, Foresti F, Daniel MFZ, Toledo-Filho SA (2000) Sex chromosome evolution in fish: the formation of the neo-Y-chromosome in Eigenmannia (Gymnotiformes). Chromosoma 109: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Amores A, Postlethwait JH (1999) Banded chromosomes and the Zebrafish karyotype. Meth in Cell Biol 60: 323–338.

    CAS  Google Scholar 

  • Anders A, Anders F, Förster W, Klinke K, Rase S (1969) XX-, XY, YY-Weibchen und XX-, XY-, YY-Männchen bei Platypoccilus maculatus (Pocciliidae). Zool Anz Suppl 33: 333–339.

    Google Scholar 

  • Baroiller J-F, Guiguien Y, Fostier A (1999) Endocrine and environmental aspects of sex differentiation in fish. Cell Mol Life Sci 55: 910–931.

    Article  CAS  Google Scholar 

  • Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucl Acids Res 3: 2303–2308.

    PubMed  CAS  Google Scholar 

  • Carrasco LAP, Penman DJ, Bromage N (1999) Evidence for the presence of sex chromosomes in Nile Tilapia (Orcochromis niloticus) from synaptonemal complex analysis of XX, XY and YY genotypes. Aquaculture 173: 207–218.

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D, Hnilicka J, Yu A, Guttman DS (1997) Lack of degeneration of loci on the neo-Y chromosome of Drosophila americana americana. Genetics 145: 989–1002.

    PubMed  CAS  Google Scholar 

  • Conover DO, Kynard BE (1981) Environmental sex determination: Interaction of temperature and genotype in a fish. Science 213: 577–579.

    PubMed  Google Scholar 

  • Daga R, Thode G, Amores A (1996) Chromosome complement, C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio. Chromosome Res 4: 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Dzwillo M (1959) Genetische Untersuchungen an domestizierten Stämmen von Lebistes reticulatus (Peters). Mitt Hamburg Zool Mus Inst 57: 143–186.

    Google Scholar 

  • Dzwillo M (1962) Über die künstliche Erzeugung funktioneller Männchen weiblichen Genotyps bei Lebistes reticulatus. Biologisches Zentralblatt 81: 575–584.

    Google Scholar 

  • Ecker M, Fritz A, Westerfield M (1992) Identification of two families of satellite-like repetitive DNA sequences from the zebrafish (Brachydanio rerio). Genomics 13: 1169–1173.

    Article  Google Scholar 

  • Foerster W, Anders F (1977) Zytogenetischer Vergleich der Karyotypen verschiedener Rassen und Arten lebendgebärender Zahnkarpfen der Gattung Xiphophorus. Zool Anz 198: 167–177.

    Google Scholar 

  • Gordon M (1954) Two opposing sex-determining mechanisms, one XX-XY, the other WY-YY, in different natural populations of the platyfish Xiphophorus maculatus. Proc 9th Int Congr Genetics (Suppl to Caryologia 6) 2: 960–964.

    Google Scholar 

  • Gornung E, Gabrielli I, Cataudella S, Sola L (1997) CMA3-banding pattern and fluorescence in situ hybridization with 18S rRNA genes in zebrafish chromosomes. Chromosome Res 5: 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Grossman A, Short R, Cain G (1981) Karyotype evolution and sex chromosome differentiation in Schistosomes (Trematoda, Schistosomatidae). Chromosoma 84: 413–430

    Article  PubMed  CAS  Google Scholar 

  • Kallman KD (1984) A new look at sex determination in poeciliid fishes. In: Turner BJ (ed) Evolutionary Genetics of Fishes. New York, Plenum Press, pp 95–171.

    Google Scholar 

  • Kirpičnikov VS (1987) Genetische Grundlagen der Fischzüchtung. Berlin: VEB Deutscher Landwirtschaftsverlag.

    Google Scholar 

  • Kosswig C (1964) Polygenic sex determination. Experientia 20: 190–199.

    Article  PubMed  CAS  Google Scholar 

  • Lapierre JM, Cacheux V, Da Silva F et al. (1998) Comparative genome hybridization: technical development and cytogenetic aspects for routine use in clinical laboratories. Annal Génétique 41: 56–62.

    CAS  Google Scholar 

  • Morescalchi A (1992) Chromosomes, sex determination and environment in teleosteans. In: Dallai R (ed) Sex Origin and Evolution. Modena: UZI, pp 137–149.

    Google Scholar 

  • Moses MJ, Poorman PA (1981) Synaptonemal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication. Chromosoma 81: 519–535

    Article  PubMed  CAS  Google Scholar 

  • Nakayama I, Foresti F, Tewari R, Schartl M, Chourront D (1994) Sex chromosome polymorphism and heterogametic males revealed by two cloned probes in the ZW/ZZ fish Leporinus elongatus. Chromosoma 103: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Feichtinger W, Schmid M, Schröder J, Zischler H, Epplen J (1990) Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. J Mol Evol 30: 456–462.

    Article  CAS  Google Scholar 

  • Nanda I, Schartl M, Epplen J, Feichtinger W, Schmid M (1993) Primitive sex chromosomes in poeciliid fishes harbor simple repetitive DNA sequences. J Exp Zool 265: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Volff J-N, Weis S et al. (2000) Amplification of a long terminal repeat-like element on the Y chromosome of the platyfish, Xiphophorus maculatus. Chromosoma 109: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Pelegri F, Schulte-Merker S (1999) A gynogenesis-based screen for maternal-effect genes in the zebrafish. Meth Cell Biology 60: 1–20.

    Article  CAS  Google Scholar 

  • Pijnacker L, Ferwerda M (1995) Zebrafish chromosome banding. Genome 38: 1052–1055.

    PubMed  CAS  Google Scholar 

  • Solari AJ (1992) Equalization of Z and W axes in chicken and quail oocytes. Cytogenet Cell Genet 59: 52–56.

    PubMed  CAS  Google Scholar 

  • Stebbins G (1971) Chromosomal Evolution in Higher Plants. Arnold, London.

    Google Scholar 

  • Steinemann M, Steinemann S, Lottspeich F (1993) How Y chromosomes become genetically inert. Proc Natl Acad Sci USA 90: 5737–5741.

    Article  PubMed  CAS  Google Scholar 

  • Traut W (1994) Sex determination in the fly Megaselia scalaris, a model system for primary steps of sex chromosome evolution. Genetics 136: 1097–1104.

    PubMed  CAS  Google Scholar 

  • Traut W, Willhoeft U (1990) A jumping sex determining factor in the fly Megaselia scalaris. Chromosoma 99: 407–412.

    Article  Google Scholar 

  • White M (1973) Animal Cytology and Evolution, 3rd edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Winge O (1934) The experimental alteration of sex chromosomes into autosomes and vice versa, as illustrated by Lebistes. CR Trav Lab Carlsberg Ser Physiol 21: 1–49.

    Google Scholar 

  • Yamamoto T (1958) Artificial induction of functional sex-reversal in genotypic females of the Medaka (Oryzias latipes). J Exp Zool 137: 227–264.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traut, W., Winking, H. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res 9, 659–672 (2001). https://doi.org/10.1023/A:1012956324417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012956324417

Navigation