Aquatic Geochemistry

, Volume 7, Issue 3, pp 195–216 | Cite as

Sulphide-bearing Waters in Northern Apennines, Italy: General Features and Water-rock Interaction

  • Lorenzo Toscani
  • Giampiero Venturelli
  • Tiziano Boschetti


Sulphide-bearing Ca-carbonate, Na-carbonate, Na-hydroxide, Na-chloride and Ca-sulphate waters from Northern Apennines were investigated in order to determine their main chemical and isotopic composition and draw inferences on water-rock interaction. δ2H and δ18O values suggest an origin mostly meteoric for the analysed waters but a well drilled in Miocenic sediments. The Na-carbonate and the Ca-sulphate waters are the most interesting geochemically. Na-carbonate type, which sometimes reaches extreme composition (Na/Ca up to 228, equivalent ratio), may have been derived through prolonged interaction of Ca-carbonate waters with rocks containing feldspar, montmorillonite and illite under calcite saturation/oversaturation; the high F and pH and the very low PCO2 agree with prograde dissolution of silicates and lasting water-rock interaction. However, Ca–Na ion exchange, involving clays of marine origin, cannot be excluded in addition. The Ca-sulphate waters, occurring in Messinian gypsum-bearing sediments, are saturated in gypsum and calcite and exhibit very high total H2S (up to 219 mg dm-3) and PCO2 (up to 0.32 bar). Mass balance of sulphate sulphur, sulphide sulphur and delta34S suggests sulphate – derived from gypsum – as source for H2S; CH4 and organic matter generate the reducing conditions and sulphate reduction is mediated by bacteria. One Na-chloride water from a well in Miocenic sediments has unusual composition, containing about 700 mgdm-3 of potential CaCl2 and having δ2H and δ18O (-47.5 and -4.9‰ respectively) which plot far from the meteoric water lines; probably it is derived by mixing of meteoric and formation waters. The Na-hydroxide water, with very high pH (11.2), is generated through protracted interaction of meteoric waters with ultramafites.

H2S-bearing waters water-rock interaction Northern Apennines Italy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anisimov L. A. (1978) Conditions of abiogenic reduction of sulphates in oil-and-gas bearing basins, Geokhimiya 11, 1692-1702.Google Scholar
  2. Barker J. F. and Fritz P. (1981) Carbon isotope fractionation during microbial methane oxidation, Nature 293, 289-291.Google Scholar
  3. Barnes I. and O'Neil J. R. (1971) The relationship between fluids in some fresh Alpine-type ultramafics and possible modern serpentinization, Western United States, Bull. Geol. Soc. Am. 80, 1947-1960.Google Scholar
  4. Barnes I., O'Neil J. R. and Trescases J. J. (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia, Geochim. Cosmochim. Acta 42, 144-145.Google Scholar
  5. Barnes I., Rapp J. B., O'Neil J. R., Sheppard R. A. and Gude A. J. (1972) Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization, Contrib. Mineral. Petrol. 35, 263-276.Google Scholar
  6. Berioli M. E., Papani G., Bernini M., Clerici A., Iaccarino S., Rossetti G., Tagliavini S., Tellini C., Bonini G., Bellucci N. and Truffelli G. (1993) Studio del bacino idrogeologico di Tabiano bagni, Sulphur III-1, 67-87.Google Scholar
  7. Berry F. A. F. (1967) Role of membrane hyperfiltration on origin of thermal brines, Imperial Valley, California, Bull. Am. Ass. Petrol. Geol. 51, 454-455.Google Scholar
  8. Billings G. K. and Williams H. H. (1967) Distribution of chlorine in terrestrial rocks-a discussion, Geochim. Cosmochim Acta 31, 2247.Google Scholar
  9. Bonazzi A., Chierici R., Salvioli Mariani E. and Vernia L. (1982) Metamorfismo e diagenesi in formazioni dell'Appennino Settentrionale (Val Dolo, province di Modena e Reggio Emilia). Dati di cristallinità dell'illite, Miner. Petrogr. Acta 26, 121-141.Google Scholar
  10. Bredehoeft J. D., Blyth W. A., White W. A. and Maxey G. B. (1963) Possible mechanism for concentrations of brines in subsurface formation, Bull. Am. Ass. Petrol. Geol. 47, 257-269.Google Scholar
  11. Bussetti F. (2000) Acque sulfuree nelle province di Reggio Emilia e Parma-aspetti geochimici, Thesis, Faculty of Sciences, University of Parma.Google Scholar
  12. Calzetti B. (2000) Interazioni di Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb e percolato di discariche di rifiuti solidi urbani con argille: dati sperimentali e implicazioni ambientali, Thesis, Faculty of Sciences, University of Parma.Google Scholar
  13. Claypool G. E., Holser W. T., Kaplan I. R., Sakai H. and Zak I. (1980) The age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation, Chemical Geology 28, 199-260.Google Scholar
  14. Conti A., Sacchi E., Chiarle M., Martinelli G. and Zuppi G. M. (2000) Geochemistry of the formation waters in the Po plain (Northern Italy): an overview, Appl. Geochemistry 15, 51-65.Google Scholar
  15. Dercovic B. (1973) A new type of strongly hydroxide-sodium-calcium water at Kulasi (Bosnia) Yugoslavia, Bull. Sci. Acad. Sci. Arts, Yugoslavia, Sct. A 18, 134-135.Google Scholar
  16. Dessau G., Gonfiantini R. and Tongiorgi E. (1959) L'origine dei giacimenti solfiferi italiani alla luce delle indagini isotopiche sui carbonati della serie Gessoso-Solfifera della Sicilia, Boll. Serv. Geologico Italia 81, 3313-348.Google Scholar
  17. Dinelli E., Testa G., Cortecci G. and Barbieri M. (1999) Stratigraphic and petrographic constraints to trace element and isotope geochemistry of Messinian sulfates of Tuscany, Mem. Soc. Geol. It. 54, 61-74.Google Scholar
  18. Eaton A. D., Clersceri L. S. and Greenberg A. E. (1996) Standard methods for examination of water and wastewater, Am. Pub. Health Ass. Washington.Google Scholar
  19. Elter P. (1980) Apennin septentrional, in Introduction à la géologie général d'Italie et guide à l'excursion 122A. Soc. It. Min. Pet. pp. 27-31.Google Scholar
  20. Fontana D., Spadafora E., Stefani C., Stocchi S., Tateo F., Villa G. and Zuffa G. G. (1994) The upper Cretaceous Helminthoid flysch of the Northern Apennines: provenance and sedimentation, Mem. Soc. Geol. It. 48, 237-250.Google Scholar
  21. Gran G. (1952) Determination of the equivalence point in the potentiometric titrations, Analyst 77, 661-671.Google Scholar
  22. Heydari E. and Moore C. H. (1989) Burial diagenesis and thermochemical sulphate reduction, Smackover Formation, south-eastern Mississippi salt basin, Geology 17, 1080-1084.Google Scholar
  23. Langelier W. and Ludwig H. (1942) Graphical methods for indicating the mineral character of natural waters, J. Am. Water Ass. 34, 335-352.Google Scholar
  24. Leeman W. P. and Sisson V. B. (1996) Geochemistry of boron and its implications for crustal and mantle processes, in Boron: mineralogy, petrology and geochemistry (E. S. Grew and L. M. Anovitz, eds), Review in Mineralogy 33, 645-707.Google Scholar
  25. Longinelli, A. (1979/1980) Isotope geochemistry of some Messinian evaporites: paleoenvironmental implications, Paleo Paleo Paleo 29, 95-123.Google Scholar
  26. Longinelli A, Selmo E. and Flora O. (2000) Isotopic composition and tritium activity of atmospheric precipitation in Northern Italy, 5th Intern. Isotope Workshop, Cracovia, July 2000.Google Scholar
  27. Marini L., Ottonello G., Canepa M. and Cipolli F. (2000) Water-rock interaction in the Bisagno Valley (Genoa, Italy): application of an inverse approach to model spring water chemistry, Geochim Cosmochim. Acta 64, 2617-2635.Google Scholar
  28. Martinelli G., Minissale A. and Verrucchi C. (1998) Geochemistry of heavily exploited aquifers in the Emilia-Romagna region (Po valley, Northern Italy), Environ. Geol. 36, 195-206.Google Scholar
  29. Mezzadri G. (1964) Petrografia delle arenarie di Ostia, Rend. Soc. Miner. It. 20, 192-228.Google Scholar
  30. Neal C. and Stanger G. (1983) Hydrogen generation from mantle source rocks in Oman, Earth Planet. Sci. Lett. 66, 315-320.Google Scholar
  31. Neal C. and Stanger G. (1985) Past and present serpentinisation of ultramafic rocks; an example from the Semail Ophiolite Nappe of Northern Oman, in The Chemistry of Weathering (J. I. Drever, ed.) pp. 249-275.Google Scholar
  32. Nordstrom D. K. (1977) Thermochemical redox equilibria of ZoBell's solution, Geochim. Cosmochim. Acta 41, 1835-1841.Google Scholar
  33. Parkhust D. L. and Appelo C. A. J. (1999) User's guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey, Water-Resources Investigations Report 95-4259, Denver, Colorado.Google Scholar
  34. Pierre C. and Fontes J. C. (1978) Isotope composition of Messinian sediments from the Mediterranean sea as indicators of paleoenvironments and diagenesis, in Initial Report of the DSDP 42.1, pp. 635-650.Google Scholar
  35. Rautenbach R. and Albrecht R. (1989) Membrane processes, Wiley, New York.Google Scholar
  36. Ricchiuto T. E. and McKenzie J. A. (1978) Stable isotopic investigation of the Messinian sulfate samples from DSP Leg 42A, Eastern Mediterranean sea, in Initial Report of the DSDP 42.1, pp. 657-660.Google Scholar
  37. Rozanski K., Araguás-Araguás L. and Gonfiantini R. (1993) Isotopic pattern in modern global precipitation, in Continental Isotope Indicators of Climate, Amer. Geophys. Un. Monograph.Google Scholar
  38. Rude P. D. and Aller R. C. (1991) Fluorine during early diagenesis of carbonate sediments: an indicator of mineral transformations, Geochim. Cosmochim. Acta 55, 2491-2509Google Scholar
  39. Singh S. P. N. and Mattigod S. V. (1992) Modelling of boron adsorption on kaolinite, Clays and Clay Minerals 40, 192-205.Google Scholar
  40. Thode H. G. (1991) Sulphur isotopes in nature and the environment: an overview, in Stable isotopes. Natural and anthropogenic sulphur in the environment. Scope 43 (H. R. Krouse and V. A. Grinenko, eds.), Wiley, Chichester, pp. 1-26.Google Scholar
  41. Toscani L., Venturelli G. and Savini E. (2000) Geochemical features of the H2S-bearing waters of the Tabiano baths, Parma province, Italy, Quaderni di Geologia Applicata 7, 125-132.Google Scholar
  42. Venturelli G., Contini S., Bonazzi A. and Mangia A. (1997) Weathering of ultramafic rocks and element mobility at Mt. Prinzera, Northern Apennines, Italy, Mineral. Mag. 61, 765-778.Google Scholar
  43. Venturelli G. and Frey M. (1977) Anchizone metamorphism in sedimentary sequences of the Northern Apennines, Rend. Soc. Min It. 33, 109-123Google Scholar
  44. Venturelli G., Toscani L., Mucchino C. and Voltolini C. (2000) Study of the water-rock interaction of spring waters in the north-Apennines, Annali di Chimica 90, 359-368.Google Scholar
  45. Worden R. H. and Smalley P. C. (1996) H2S-producing reactions in deep carbonate gas reservoir: Khuff Formation, Abu Dhabi, Chemical Geology 133, 157-171.Google Scholar
  46. Worden R. H., Smalley P. C. and Oxtoby N. H. (1995) Gas souring by thermochemical sulphate reduction at 140 °C, Am. Ass. Pet. Geologists Bull. 79, 854-863.Google Scholar
  47. Zuffa G. G. (1969) Arenarie e calcari arenacei miocenici di Vetto-Carpineti (formazione di Bismantova, Appennino settentrionale), Mineral. Petrogr. Acta 15, 191-219.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Lorenzo Toscani
    • 1
  • Giampiero Venturelli
    • 1
  • Tiziano Boschetti
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversitá di ParmaParmaItaly

Personalised recommendations