Skip to main content
Log in

Essentials of Classical Brane Dynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper provides a self-contained overview of the geometry and dynamics of relativistic brane models, of the category that includes point particle, string, and membrane representations for phenomena that can be considered as being confined to a worldsheet of the corresponding dimension (respectively one, two, and three) in a thin limit approximation in an ordinary 4-dimensional spacetime background. This category also includes “brane world” models that treat the observed universe as a 3-brane in 5 or higher dimensional background. The first sections are concerned with purely kinematic aspects: it is shown how, to second differential order, the geometry (and in particular the inner and outer curvature) of a brane worldsheet of arbitrary dimension is describable in terms of the first, second, and third fundamental tensor. The later sections show how—to lowest order in the thin limit—the evolution of such a brane worldsheet will always be governed by a simple tensorial equation of motion whose left hand side is the contraction of the relevant surface stress tensor T¯µv with the (geometrically defined) second fundamental tensor K μν ρ, while the right hand side will simply vanish in the case of free motion and will otherwise be just the orthogonal projection of any external force density that may happen to act on the brane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Achúcarro, A., Evans, J., Townsend, P. K., and Wiltshire, D. L. (1987). Super p-branes. Physics Letters 198B, 441–446.

    Google Scholar 

  • Arodz, H., Sitarz, A., and Wegrzyn, P. (1991). Acta Physica Polonica B 22, 495; 23 (1992) 53.

    Google Scholar 

  • Barrabés, C., Boisseau, B., and Sakellariadou, M. (1994). Gravitational effects on domain walls with curvature corrections. Physical Review D 49, 2734–2739.

    Google Scholar 

  • Bars, I. and Pope, C. N. (1988). Anomalies in super p-branes. Classical and Quantum Gravity 5, 1157–1168.

    Google Scholar 

  • Battye, R. A. and Carter, B. (1995). Gravitational perturbations of relativistic membranes and strings. Physics Letters B 357, 29–35, hep-ph/9508300.

    Google Scholar 

  • Battye, R. A. and Carter, B. (2000). Second order Lagrangian and symplectic current for gravitationally perturbed Dirac–Goto–Nambu strings and branes. Classical and Quantum Gravity 17, 3325–3334, hep-th/9811075.

    Google Scholar 

  • Battye, R. A. and Shellard, E. P. S. (1995). String radiative backradiation. Physical Review Letters 75, 4354–4357, astro-ph/9408078.

    Google Scholar 

  • Battye, R. A. and Shellard, E. P. S. (1996). Radiative backreaction on global strings. Physical Review D 53, 1811, hep-ph/9508301.

    Google Scholar 

  • Ben-Ya'acov, U. (1992). Unified dynamics of quantum vortices. Nuclear Physics B 382, 597–615.

    Google Scholar 

  • Binetruy, P., Defffayet, C., and Langlois, D. (2000). Non-cosmological cosmology from a brane universe. Nuclear Physics B 565, 269–287, hep-th/9905012.

    Google Scholar 

  • Boisseau, B. and Letelier, P. S. (1992). Cosmic strings with curvature corrections. Physical Review D 46, 1721–1729.

    Google Scholar 

  • Bowcock, P., Charmousis, C., and Gregory, R. (2000). General brane cosmologies and their global spacetime structure, hep-th/0007177. Class. Quant. Grav. 17, 4745–4764.

    Google Scholar 

  • Brandenberger, R., Carter, B., Davis, A.-C., and Trodden, M. (1996). Cosmic vortons and particle constraints. Physical Review D 54, 6059–6071, hep-ph/9605382.

    Google Scholar 

  • Capovilla, R. and Guven, J. (1995a). Geomety of deformations of relativistic membranes. Physical Review D 51, 6736, gr-qc/9411060.

    Google Scholar 

  • Capovilla, R. and Guven, J. (1995b). Large deformations of relativistic membranes: A generalisation of the Raychaudhuri equations. Physical Review D 52, 1072, gr-qc/9411061.

    Google Scholar 

  • Carter, B. (1989a). Duality relation between charged elastic strings and superconducting cosmic strings. Physics Letters B 224, 61–66.

    Google Scholar 

  • Carter, B. (1989b). Stability and characteristic propagation speeds in superconducting cosmic and other string models. Physics Letters B 228, 466–470.

    Google Scholar 

  • Carter, B. (1990). Covariant mechanics of simple and conducting cosmic strings and membranes. In Formation and Evolution of Cosmic Strings, G. Gibbons, S. Hawking, and T. Vachaspati, eds., Cambridge University Press, Cambridge, pp. 143–178.

    Google Scholar 

  • Carter, B. (1992a). Outer curvature and conformal geometry of an imbedding. Journal of Geometry and Physics 8, 53–88.

    Google Scholar 

  • Carter, B. (1992b). Basic brane theory. Journal of Classical and Quantum Gravity 9, 19–33.

    Google Scholar 

  • Carter, B. (1993). Perturbation dynamics for membranes and strings governed by Dirac–Goto–Nambu action in curved space. Physical Review D 48, 4835–4838.

    Google Scholar 

  • Carter, B. (1994a). Equations of motion of a stiff geodynamic string or higher brane. Classical and Quantum Gravity 11, 2677–2692.

    Google Scholar 

  • Carter, B. (1994b). Axionic vorticity variational formulation for relativistic perfect fluids. Classical and Quantum Gravity 11, 2013–2130.

    Google Scholar 

  • Carter, B. (1995). Dynamics of cosmic strings and other brane models. In Formation and Interactions of Topological Defects (NATO ASI B349), R. Brandenberger and A.-C. Davis, eds., Plenum, New York, pp. 304–348.

    Google Scholar 

  • Carter, B. and Battye, R. (1998). Nondivergence of gravitational self interactions for Nambu–Goto strings. Physics Letters B 430, 49–53, hep-th/9803012.

    Google Scholar 

  • Carter, B. and Gregory, R. (1995). Curvature corrections to dynamics of domain walls. Physical Review D 51, 5839–5846, hep-th/9410095.

    Google Scholar 

  • Carter, B. and Langlois, D. (1995). Kalb–Ramond coupled vortex fibration model for relativistic fluid dynamics. Nuclear Physics B 454, 402–424, hep-th/9611082.

    Google Scholar 

  • Carter, B., Sakellariadou, M., and Martin, X. (1994). Cosmological expansion and thermodynamic mechanisms in cosmic string dynamics. Physical Review D 50, 682–699.

    Google Scholar 

  • Chamblin, A. and Gibbons, G. (2000). Supergravity on the brane. Physical Review Letters 84, 1090–1093, hep-th/9909130.

    Google Scholar 

  • Chamblin, A., Hawking, S. W., and Real, H. S. (2000). Brane world black holes. Physical Review D 61, 065007, hep-th/9909205.

    Google Scholar 

  • Copeland, E., Haws, D., Kibble. T. W. B., Mitchel, D., and Turok, N. (1988). Monopoles connected by strings. Nuclear Physics B 298, 458–492.

    Google Scholar 

  • Dabholkar, A. and Quashnock, J. M. (1990). Pinning down the axion. Nuclear Physics B 333, 815–832.

    Google Scholar 

  • Davis, A.-C., Davis, S. C., Perkins, W. B., and Vernon, I. R. (2001). Brane world phenology and the Z2 symmetry, hep-ph/0008132. Phys. Lett. B 504, 254–261.

    Google Scholar 

  • Davis, R. L. and Shellard, E. P. S. (1989a). Cosmic vortons. Nuclear Physics B 323, 209–2024.

    Google Scholar 

  • Davis, R. L. and Shellard, E. P. S. (1989b). Global strings and superfluid vortices. Physical Review Letters 63, 2021–2024.

    Google Scholar 

  • Deruelle, N. and Dolezel, T. (2000). Brane versus shell cosmologies in Einstein and Einstein–Gauss–Bonnet theories, gr-qc/0004021. Phys. Rev. D 62, 103502.

    Google Scholar 

  • Dirac, P. A. M. (1962). An extensible model of the electron. Proceedings of the Royal Society of London A 268, 57–67.

    Google Scholar 

  • Eisenhart, L. P. (1926). Riemannian Geometry, Princeton University Press, Princeton, reprinted 1960.

    Google Scholar 

  • Garriga, J. and Sakellariadou, M. (1993). Effects of friction on cosmic strings. Physical Review 48, 2502–2515, gr-qc/9307008.

    Google Scholar 

  • Gherhgetta, T. and Shaposhnikov, M. (2000). Localising gravity on a string-like defect in six dimensions, hep-th/0004014. Phys. Rev. Lett. 85, 240–243.

    Google Scholar 

  • Gregory, R. (1988). The effective action for a cosmic string. Physics Letters B 206, 199–204.

    Google Scholar 

  • Gregory, R. (1993). Effective actions for bosonic topological defects. Physical Review D 43, 520–525.

    Google Scholar 

  • Gregory, R., Haws, D., and Garfinkle, D. (1991). Dynamics of domain walls and strings. Physical Reivew D 42, 343–345.

    Google Scholar 

  • Hartely, D. H. and Tucker, R. W. (1990). In Geometry of Low Dimensional Manifolds, Vol. 1, S. Donaldson and C. Thomas, eds., Cambridge University Press, Cambridge, L.M.S. Lecture Note Series Vol. 150.

    Google Scholar 

  • Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Spacetime, Cambridge University Press, Cambridge.

    Google Scholar 

  • Howe, P. S. and Tucker, R.W. (1977). A locally supersymmetric and reparametrisation invariant action for a spinning membrane. Journal of Physics A 10, L155–L162.

    Google Scholar 

  • Kibble, T.W. B. (1976). Topology of cosmic domains and strings. Journal of Physics A 9, 1387–1398.

    Google Scholar 

  • Kogan, I. I., Mouslopoulos, S., Papazoglou, A., Ross, G. C., and Santiago, J. (2000). Three threebrane universe: New phenomenology for the new millenium? Nuclear Physics B 584, 313–328, hep-ph/9912552.

    Google Scholar 

  • Kogan, I. I., Mouslopoulos, S., Papazoglou, A., and Ross, G. G. (n.d.). Multi-brane worlds and modification of gravity at large scales, hep-th/0006030.

  • Langlois, D., Maartens, R., and Wands, D. (2000). Gravitational waves from inflation on the brane, hep-th/0006007. Phys. Lett. B 489, 259–267.

    Google Scholar 

  • Larsen, A. L. (1993). A note on dispersive versus non-dispersive strings. Classical and Quantum Gravity 10, L35–L38.

    Google Scholar 

  • Letelier, P. S. (1990). Nambu bubbles with curvature corrections. Physical Review D 41, 1333–1335.

    Google Scholar 

  • Maartens, R. (2000). Cosmological dynamics on the brane, hep-th/0004166. Phys. Rev. D 62, 084023.

    Google Scholar 

  • Maeda, K. I. and Turok, N. (1988). Finite width corrections to the Nambu action for the Nielsen–Olesen string. Physics Letters B 202, 376–384.

    Google Scholar 

  • Manton, N. S. (1938). Topology in the Weinberg–Salam theory. Physical Review D 28, 2019–2026.

    Google Scholar 

  • Martin, X. and Vilenkin, A. (1996). Gravitational background from hybrid topological defects. Physical Review Letters 77, 2879, astro-ph/9606022.

    Google Scholar 

  • Mennim, A., and Battye, R. A. (2000). Cosmological expansion on a dilatonic brane world, hepth/0008192. Class. Quant. Grav. 18, 2171–2194.

    Google Scholar 

  • Nambu, Y. (1977). String-like configurations in the Weinberg–Salam theory. Nuclear Physics B 130, 505–515.

    Google Scholar 

  • Penrose, R. and Rindler, W. (1984). Spinors and Space-Time, Cambridge University Press, Cambridge.

    Google Scholar 

  • Perkins, W. B. (2001). Colliding bubble worlds. gr-qc/0010053. Phys. Lett. B 504, 28–32.

    Google Scholar 

  • Polyakov, A. (1986). Fine structure on strings. Nuclear Physics B 268, 406–412.

    Google Scholar 

  • Sakellariadou, M. (1991). Radiation of Nambu–Goldstone bosons from infinitely long strings. Physical Review D 44, 3767–3773.

    Google Scholar 

  • Schouten, J. A. (1954). Ricci Calculus, Springer, Heidelberg.

    Google Scholar 

  • Shellard, E. P. S. (1990). Axion strings and domain walls. In Formation and Evolution of Cosmic Strings, G. Gibbons, S. Hawking, and T. Vachaspati, eds., Cambridge University Press, Cambridge, pp. 107–115.

    Google Scholar 

  • Shiromizu, T., Maeda, K., and Sasaki, M. (2000). The Einstein equations on the 3-brane world. gr-qc/9910076. Phis. Rev. D 62, 024012.

    Google Scholar 

  • Sikivie, P. (1982). Axions, domainwalls, and the early univese. Physical Review Letters 48, 1156–1159.

    Google Scholar 

  • Silveira, V. and Maia, M. D. (1993). Topological defects and corections to the Nambu action. Physics Letters A 174, 280–288.

    Google Scholar 

  • Stachel, J. (1980). Thickenning the string: The perfect string dust. Physical Review D 21, 2171–2181.

    Google Scholar 

  • Vachaspati, T. and A. Achúcarro (1991). Semilocal cosmic strings. Physical Review D 44, 3067–3071.

    Google Scholar 

  • Vachaspati, T. and Barriola, M. (1992). A new class of defects. Physical Review Letters 69, 1867–1872.

    Google Scholar 

  • Vilenkin, A. (1991). Cosmic string dynamics with friction. Physical Review D 43, 1060–1062.

    Google Scholar 

  • Vilenkin, A. and Everett, A. E. (1982). Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons. Physical Review Letters 48, 1867–1870.

    Google Scholar 

  • Vilenkin, A. and Vachaspati, T. (1987). Radiation of Goldstone bosons from cosmic strings. Physical Review D 35, 1138–1140.

    Google Scholar 

  • Witten, E. (1985). Superconducting strings. Nuclear Physics B 249, 557–592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, B. Essentials of Classical Brane Dynamics. International Journal of Theoretical Physics 40, 2099–2129 (2001). https://doi.org/10.1023/A:1012934901706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012934901706

Keywords

Navigation