Skip to main content
Log in

Inverse Problem and Monodromy Data for Three-Dimensional Frobenius Manifolds

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the inverse problem for semi-simple Frobenius manifolds of dimension 3 and we explicitly compute a parametric form of the solutions of the WDVV equations in terms of Painlevé VI transcendents. We show that the solutions are labeled by a set of monodromy data. We use our parametric form to explicitly construct polynomial and algebraic solutions and to derive the generating function of Gromov–Witten invariants of the quantum cohomology of the two-dimensional projective space. The procedure is a relevant application of the theory of isomonodromic deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D. V. and Bolibruch, A. A.: The Riemann-Hilbert Problem, Publ. Steklov Institute Math., 1994.

  2. Balser, W., Jurkat, W. B. and Lutz, D. A.: Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48–94.

    Google Scholar 

  3. Balser, W., Jurkat, W. B. and Lutz, D. A.: On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, SIAM J. Math. Anal. 12 (1981), 691–721.

    Google Scholar 

  4. Bertola, M.: Jacobi groups, Hurwitz spaces and Frobenius structures, Preprint SISSA 74/98/FM, 1998, to appear in Differential Geom. Appl.

  5. Birman, J. S.: Braids, Links, and Mapping Class Groups, Ann. Math. Stud. 82, Princeton Univ. Press, 1975.

  6. Coxeter, H. S. M.: Regular Polytopes, Dover, New York, 1963.

    Google Scholar 

  7. Di Francesco, P. and Itzykson, C.: Quantum intersection rings, In: R. Dijkgraaf, C. Faber and G. B. M. van der Geer (eds), The Moduli Space of Curves, 1995.

  8. Dijkgraaf, R., Verlinde, E. and Verlinde, H.: Topological strings in d < 1, Nuclear Phys. B 352 (1991), 59–86.

    Google Scholar 

  9. Dubrovin, B.: Integrable systems in topological field theory, Nuclear Phys. B 379 (1992), 627–689.

    Google Scholar 

  10. Dubrovin, B.: Geometry and itegrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993), 539–564.

    Google Scholar 

  11. Dubrovin, B.: Geometry of 2D topological field theories, In: Lecture Notes in Math. 1620, Springer, New York, 1996, pp. 120–348.

    Google Scholar 

  12. Dubrovin, B.: Painlevé trascendents in two-dimensional topological field theory, In: R. Conte (ed.), The Painlevé Property, One Century Later, Springer, New York, 1999.

    Google Scholar 

  13. Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds, math.AG/9807034, 1998.

  14. Dubrovin, B.: Differential geometry on the space of orbits of a Coxeter group, math.AG/9807034, 1998.

  15. Dubrovin, B. and Mazzocco, M.: Monodromy of certain Painlevé-VI trascendents and reflection groups, Invent. Math. 141 (2000), 55–147.

    Google Scholar 

  16. Gambier, B.: Sur des équations differentielles du second ordre et du premier degré dont l'intégrale est à points critiques fixes, Acta Math. 33 (1910), 1–55.

    Google Scholar 

  17. Guzzetti, D: Stokes matrices and monodromy for the quantum cohomology of projective spaces, Comm. Math. Phys. 207 (1999), 341–383. Also see the preprint math/9904099.

    Google Scholar 

  18. Its, A. R. and Novokshenov, V. Y.: The Isomonodromic Deformation Method in the Theory of Painleve Equations, Lecture Notes in Math. 1191, Springer, New York, 1986.

    Google Scholar 

  19. Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida, M.: From Gauss to Painlevé, Aspects Math. 16, Vieweg, Braunschweig, 1991.

    Google Scholar 

  20. Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé transcendents, Publ. RIMS, Kyoto Univ. 18 (1982), 1137–1161.

    Google Scholar 

  21. Jimbo, M., Miwa, T. and Ueno, K.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (I), Physica D 2 (1981), 306.

    Google Scholar 

  22. Jimbo, M. and Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (II), Physica D 2 (1981), 407–448.

    Google Scholar 

  23. Jimbo, M. and Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (III), Physica D 4 (1981), 26.

    Google Scholar 

  24. Kontsevich, M. and Manin, Y. I.: Gromov-Witten classes, quantum cohomology and enumerative geometry, Comm. Math. Phys 164 (1994), 525–562.

    Google Scholar 

  25. Malgrange, B.: Équations différentielles à coefficientes polynomiaux, Birkhauser, Basel, 1991.

    Google Scholar 

  26. Manin, V. I.: Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Max Planck Institut fur Mathematik, Bonn, Germany, 1998.

    Google Scholar 

  27. Miwa, T.: Painlevé property of monodromy preserving equations and the analyticity of τ-functions, Publ. RIMS 17 (1981), 703–721.

    Google Scholar 

  28. Painlevé, P.: Sur les équations differentielles du second ordre et d'ordre supérieur, dont l'intégrale générale est uniforme, Acta Math. 25 (1900), 1–86.

    Google Scholar 

  29. Ruan, Y. and Tian, G.: A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269–278.

    Google Scholar 

  30. Saito, K.: Preprint RIMS-288, 1979 and Publ. RIMS 19 (1983), 1231–1264.

    Google Scholar 

  31. Saito, K., Yano, T. and Sekeguchi, J.: Comm. Algebra 8(4) (1980), 373–408.

    Google Scholar 

  32. Sato, M., Miwa, T. and Jimbo, M.: Holonomic quantum fields. II - The Riemann-Hilbert problem, Publ. RIMS Kyoto. Univ. 15 (1979), 201–278.

    Google Scholar 

  33. Shimomura, S.: Painlevé trascendents in the neighbourhood of fixed singular points, Funkcial. Ekvac. 25 (1982), 163–184. Series expansions of Painlevé trascendents in the neighbourhood of a fixed singular point, Funkcial. Ekvac. 25 (1982), 185-197. Supplement to 'series expansions of Painlevé trascendents in the neighbourhood of a fixed singular point', Funkcial. Ekvac. 25 (1982), 363-371. A family of solutions of a nonlinear ordinary differntial equation and its application to Painlevé equations (III), (V), (VI), J. Math. Soc. Japan 39 (1987), 649-662.

    Google Scholar 

  34. Witten, E.: Nuclear Phys. B 340 (1990), 281–332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzzetti, D. Inverse Problem and Monodromy Data for Three-Dimensional Frobenius Manifolds. Mathematical Physics, Analysis and Geometry 4, 245–291 (2001). https://doi.org/10.1023/A:1012933622521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012933622521

Navigation