Skip to main content
Log in

Notes on Black Hole Phase Transitions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In these notes we present a summary of existing ideas about phase transitions of black hole spacetimes in semiclassical gravity and offer some thoughts on three possible scenarios or mechanisms by which these transitions could take place. We begin with a review of the thermodynamics of a black hole system and emphasize that the phase transition is driven by the large entropy of the black hole horizon. Our first theme is illustrated by a quantum atomic black hole system, generalizing to finite-temperature a model originally offered by Bekenstein. In this equilibrium atomic model, the black hole phase transition is realized as the abrupt excitation of a high energy state, suggesting analogies with the study of two-level atoms. Our second theme argues that the black hole system shares similarities with the defect-mediated Kosterlitz–Thouless transition in condensed matter. These similarities suggest that the black hole phase transition may be more fully understood by focusing upon the dynamics of black holes and white holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we compare the black hole phase transition to another transition driven by an (exponentially) increasing density of states, the Hagedorn transition first found in hadron physics in the context of dual models or the old string theory. In modern string theory the Hagedorn transition is linked by the Maldacena conjecture to the Hawking–Page black hole phase transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics of the Hagedorn transition may yield insight into the dynamics of the black hole phase transition. We argue that characteristics of the Hagedorn transition are already contained within the dynamics of classical string systems. Our third theme points to carrying out a full nonperturbative and nonequilibrium analysis of the large N behavior of classical SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena conjecture we can then gain valuable insight into black hole phase transitions in AdS space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aharony, O., Gubser, S. S., Maldacena, J., Ooguri, H., and Oz, Y. (2000). Physics Reports 323, 183.

    Google Scholar 

  • Bekenstein, J. D. (1973). Physical Review D 7, 949.

    Google Scholar 

  • Bekenstein, J. D. (1999). Quantum black holes as atoms. In Eighth Marcel Grossmann Meeting on Relativistic Astrophysics: MG-8, Jerusalem, Isreal, 22–27 June 1997, T. Piran, ed., World Scientific,Singapore (Report No. gr-qc/9710076).

  • Bowick, M. J. and Wijewardhana, L. C. R. (1985). Physical Review Letters 54, 2485.

    Google Scholar 

  • Busso, R. and Hawking, S. W. (1995). Physical Review D 52, 5659.

    Google Scholar 

  • Busso, R. and Hawking, S. W. (1996). Physical Review D 54, 6312.

    Google Scholar 

  • Coleman, S. (1988). Nuclear Physics B 307, 867.

    Google Scholar 

  • Coleman, S., Hartle, J. B., Piran, T., and Weinberg, S., eds. (1991). Quantum Cosmology and Baby Universes, World Scientific, Singapore.

    Google Scholar 

  • Danielsson, U. H. and Schiffer, M. (1993). Physical Review D 48, 4779.

    Google Scholar 

  • Dowker, F. et al. (1994). Physical Review D 50, 2662.

    Google Scholar 

  • Ellis, J., Ghosh, A., and Mavromatos, N. E. (1999). Physics Letters B 454, 193.

    Google Scholar 

  • Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (2000). Physical Review Letters 85, 4643 (Report No. gr-qc/0005131).

    Google Scholar 

  • Garfunkle, D., Giddings, S. B., and Stominger, A. (1994). Physical Review D 49, 958.

    Google Scholar 

  • Gross, D. J., Perry, M. J., and Yaffe, L. G. (1982). Physical Review D 25, 330.

    Google Scholar 

  • Hagedorn, R. (1965). Nuovo Cimento (Suppl.), 3, 147.

    Google Scholar 

  • Hawking, S. W. (1978). Nuclear Physics B 144, 349.

    Google Scholar 

  • Hawking, S. W. (1979). The path integral approach to quantum gravity. In General Relativity: An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hawking, S. W. (1988). Physical Review D 37, 904.

    Google Scholar 

  • Hawking, S. W. (1996). Physical Review D 53, 3099.

    Google Scholar 

  • Hawking, S. W., Horowitz, G. T., and Ross, S. F. (1995). Physical Review D 51, 4302.

    Google Scholar 

  • Hawking, S. W. and Page, D. N. (1983). Communications in Mathematical Physics 87, 577.

    Google Scholar 

  • Hawking, S. W., Page, D. N., and Pope, C. N. (1980). Nuclear Physics B 170 (FS1), 283.

    Google Scholar 

  • Hu, B. L. (1988). Cosmology as ‘condensed matter’ Physics. In Proceedings of the Third Asia Pacific Conference, Vol. 1, Y. W. Chan et al., eds., World Scientific, Singapore, p. 301 (Report No. gr-qc/9511076).

    Google Scholar 

  • Hu, B. L. (1994). Semiclassical gravity as mesoscopic Physics. In Fourth Drexel Symposium on Quantum Nonintegrability, Philadelphia, PA, 8–11 September, 1994 (Report No. gr-qc/9511077).

  • Hu, B. L. (1996). General relativity as geometro-hydrodynamics. In Second International Sakharov Conference on Physics, Moscow, Russia, 20–24 May, 1996 (Report No. gr-qc/9607070).

  • Hu, B. L. (1999). International Journal of Theoretical Physics 38, 2987 (Report No. gr-qc/9902064).

    Google Scholar 

  • Jacobson, T. (1991). Physical Review D 44, 1731.

    Google Scholar 

  • Kastrup, H. A. (1997). Physics Letters B 413, 267.

    Google Scholar 

  • Kastrup, H. A. (2000). Annalen der Physik (Leipzig) 9, 503 (Report No. gr-qc/9906104).

    Google Scholar 

  • Kosterlitz, J. M. and Thouless, D. J. (1973). Journal of Physics C 6, 1181.

    Google Scholar 

  • Langer, J. S. (1992). An introduction to the kinetics of first-order phase transitions. In Solids Far From Equilibrium, C. Godreche, ed., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mermin, N. D. and Wagner, H. (1966). Physical Review Letters 22, 1133.

    Google Scholar 

  • Mukhanov, V. (1986). JETP Letters 44, 63.

    Google Scholar 

  • Olesen, P. (1985). Physics Letters B 169, 408.

    Google Scholar 

  • Page, D. N. (1981). General Relativity and Gravitation 13, 1117.

    Google Scholar 

  • Pisarski, R. D. and Alvarez, O. (1982). Physical Review D 26, 3735.

    Google Scholar 

  • Sakellariadou, M. (1996). Nuclear Physics B 468, 319.

    Google Scholar 

  • Salomonson, P. and Skagerstam, B. (1986). Nuclear Physics B 268, 349.

    Google Scholar 

  • Smith, A. G. and Vilenkin, A. (1987). Physical Review D 36, 990.

    Google Scholar 

  • Smolin, L. (1995). Cosmology as a problem in critical phenomena, Report No. gr-qc/9505022.

  • Stephens, G. J. (2000). On the Dynamics of Phase Transitions and the Nonequilibrium Formation of Topological Defects, PhD Thesis, University of Maryland, College Park.

    Google Scholar 

  • t'Hooft, G. (1974). Nuclear Physics B 72, 461.

    Google Scholar 

  • Unruh, W. G. (1981). Physical Review Letters 46, 1351.

    Google Scholar 

  • Unruh, W. G. (1995). Physical Review D 51, 2827.

    Google Scholar 

  • Volovik, G. E. (1995). Is there analogy between quantized vortex and black hole? Report No. gr-qc/9510001.

  • Volovik, G. E. (2000). Physics Reports 351, 195.

    Google Scholar 

  • Warner, N. P. (1982). Communications in Mathematical Physics 86, 419.

    Google Scholar 

  • Wheeler, J. A. (1957). Annalen der Physik (Leipzig) 2, 604.

    Google Scholar 

  • Whiting, B. F. and York, J. W. (1988). Physical Review Letters 61, 1336.

    Google Scholar 

  • Wilson, K. (1974). Physical Review D 10, 2445.

    Google Scholar 

  • Witten, E. (1998). Advances in Theoretical and Mathematical Physics 2, 505.

    Google Scholar 

  • York, J. W. (1986). Physical Review D 33, 2092.

    Google Scholar 

  • Zurek, W. H. (1996). Physics Reports 276, 178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, G.J., Hu, B.L. Notes on Black Hole Phase Transitions. International Journal of Theoretical Physics 40, 2183–2200 (2001). https://doi.org/10.1023/A:1012930019453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012930019453

Keywords

Navigation