Skip to main content

Negative Poisson's ratio polyethylene foams

Abstract

Various polyethylene foams were subjected to thermo-mechanical processing with the aim of transforming them into re-entrant materials exhibiting negative Poisson's ratio. Following transformation, large cell foams (cell sizes of 1 and 2 mm) exhibited re-entrant cell structure and negative Poisson's ratio over a range of processing times and temperatures. Poisson's ratio vs. strain for these foams was similar to prior results for reticulated polyurethane foams. Following processing, microcellular polyethylene foam was densified but cells remained convex; it did not exhibit a substantial negative Poisson's ratio. This foam had a different transition temperature as determined via DSC than the large cell foams.

This is a preview of subscription content, access via your institution.

References

  1. K. C. Khemani, in “Polymeric Foams: Science and Technology,” edited by K. C. Khemani (American Chemical Society, Washington DC, 1997) p. 1.

    Google Scholar 

  2. J. S. Colton and N. P. Suh, Polymer Engineering and Science 27(7) (1987) 500.

    Google Scholar 

  3. M. Shimbo, D. F. Baldwin and N. P. Suh, ibid. 35 (1995) 1387.

    Google Scholar 

  4. V. Kumar and N. P. Suh, ibid. 30 (1990) 1323.

    Google Scholar 

  5. V. Kumar and J. E. Weller, in “Polymeric Foams: Science and Technology,” edited by K. C. Khemani (American Chemical Society, Washington D.C., 1997) p. 101.

    Google Scholar 

  6. L. J. Gibson and M. F. Ashby, “Cellular Solids: Structure and Properties,” 2nd ed. (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  7. C. B. Park, A. H. Behravesh and R. D. Venter, in “Polymeric Foams: Science and Technology,” edited by K. C. Khemani (American Chemical Society, Washington D.C., 1997) p. 115.

    Google Scholar 

  8. P. Kannus, J. Parkkari and J. Poutala, Bone 25 (1999) 229.

    Google Scholar 

  9. J. G. Fleischli, L. A. Lavery, S. A. Vela, H. Ashry and D. C. Lavery, Journal of the American Podiatric Medical Association 87 (1997) 466.

    Google Scholar 

  10. Y. C. Fung, “Foundations of Solid Mechanics” (Prentice-all, Englewood, NJ, 1968) p. 353.

    Google Scholar 

  11. R. S. Lakes, Science 235 (1987) 1038.

    Google Scholar 

  12. J. Glieck, The New York Times (14 April 1987).

  13. K. L. Alderson and K. E. Evans, Polymer 33 (1992) 4435.

    Google Scholar 

  14. G. Milton, J. Mech. Phys. Solids 40 (1992) 1105.

    Google Scholar 

  15. J. B. Choi and R. S. Lakes, J. Mater. Sci. 27 (1992) 4678.

    Google Scholar 

  16. M. Gehlsen, 3M corporation, private communication, 1999.

  17. H. Kugler, R. Stacer and C. Steimle, Rubber Chemistry and Technology 63 (1990) 473.

    Google Scholar 

  18. C. P. Chen and R. S. Lakes, Scripta Metall et Mater. 29 (1993) 395.

    Google Scholar 

  19. E. O. Martz, T. Lee, R. S. Lakes, V. K. Goel and J. B. Park, Cellular Polymers 15 (1996) 229.

    Google Scholar 

  20. Y. C. Wang and R. S. Lakes, in preparation.

  21. A. Mahapatro, N. J. Mills and G. L. A. Sims, Cellular Polymers 17 (1998) 252.

    Google Scholar 

  22. R. S. Lakes, J. Mater. Sci. 26 (1991) 2287.

    Google Scholar 

  23. J. B. Choi and R. S. Lakes, J. Composite Materials 29 (1995) 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brandel, B., Lakes, R.S. Negative Poisson's ratio polyethylene foams. Journal of Materials Science 36, 5885–5893 (2001). https://doi.org/10.1023/A:1012928726952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012928726952

Keywords

  • Polymer
  • Foam
  • Polyethylene
  • Transition Temperature
  • Processing Time