Skip to main content
Log in

Leachability and Toxicity of Hydrocarbons, Metals and Salt Contamination from Flare Pit Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Although composite chemical analyses, such as total petroleumhydrocarbons and total metals, are often used to assess theextent of contamination at an industrial site, it is difficultto relate chemical analyses to the environmental andtoxicological effects of soil contamination. Since toxicity isrelated to contaminant bioavailability and solubility,identification and quantification of leachable contaminantsshould provide an indication of the environmental hazard of the site contaminants. Experiments were performed to determine theleachability and toxicity of contaminants from a flare pit soilwhich was extensively contaminated with hydrocarbons, metals andsalt. Toxicity bioassays included earthworm mortality(Lumbricus terrestris), seed germination and root elongation(Lactuca sativa and Panicum miliaceum L.),algal growth inhibition (Selenastrum capricornutum) andbacterial luminescence inhibition (Pseudomonasfluorescens). Although this soil would require remediationaccording to chemically based soil criteria, neither the contaminated soil nor leachate generated from the contaminated soil were particularly toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.: 1995, ‘How Toxic are Chemicals in Soils?’, Environ. Sci. Technol. 29, 2713–2717.

    Google Scholar 

  • Atalay, A. and Hwang, K.-J.: 1996, ‘Extraction of Light Hydrocarbons from Soil’, Water, Air, and Soil Pollut. 90, 451–468.

    Google Scholar 

  • Beck, A. J., Wilson, S. C., Alcock, R. E. and Jones, K. C.: 1995, ‘Kinetic Constraints on the Loss of Organic Chemicals from Contaminated Soils: Implications for Soil-Quality Limits’, Crit. Rev. Envir. Sci. Tech. 25, 1–43.

    Google Scholar 

  • Boularbah, A., Morel, J. L., Bitton, G. and Mench, M.: 1996, ‘A Direct Soild Phase Assay Specific for Heavy Metal Toxicity. 2. Assessment of Heavy Metal Immobilization in Soils and Bioavailability to Plants’, J. Soil Contam. 5, 395–404.

    Google Scholar 

  • Boyd, E. M., Killham, K., Wright, J., Rumford, S., Hetheridge, M., Cumming, R. and Mehang, A. A.: 1997a, ‘Toxicity Assessment of Xenobiotic Contaminated Groundwater Using a lux-Modified Pseudomonas fluorescens’, 35, 1967–1985.

    Google Scholar 

  • Boyd, E. M., Mehang, A. A., Wright, J. and Killham, K.: 1997b, ‘Assessment of Toxicological Interactions of Benzene and its Primary Degradation Products (Catechol and Phenol) Using a lux-Modified Bacterial Bioassay’, Environ. Toxicol. Chem. 16, 849–856.

    Google Scholar 

  • Boyd, E. M., Meharg, A. A., Wright, J. and Killham, K.: 1998, ‘Toxicity of Chlorobenzenes to a lux-Marked Terrestrial Bacterium, Pseudomonas fluorescens’, Environ. Toxicol. Chem. 17, 2134–2140.

    Google Scholar 

  • Canet, R., Pomares, F. and Tarazona, F.: 1997, ‘Chemical Extractability and Availability of Heavy Metals after Seven Years Applications of Organic Wastes to a Citrus Soil’, Soil Use Manage. 3, 117–121.

    Google Scholar 

  • Chung, N. and Alexander, M.: 1998, ‘Differences in Seqestration and Bioavailability Aged in Dissimilar Soils’, Environ. Sci. Technol. 32, 885–860.

    Google Scholar 

  • Debus, R. and Hund, K.: 1997, ‘Development of Analytical Methods for the Assessment of Ecotoxicological Relevant Soil Contamination Part B - Ecotoxicological Analysis in Soil and Soil Extracts’, Chemosphere 35, 239–261.

    Google Scholar 

  • Eaton, A., Clesceri, L. and Greenberg, A. (eds.): 1995, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.

    Google Scholar 

  • Environmental Canada, Conservation and Protection: 1992, Biological Test Method: Growth Inhibition Test using the Freshwater Alga Selenastrum capricornutum, Environmental Protection Series, Report EPS 1/RM/24, Beauregard Printers Limited, Canada, 61 pp.

    Google Scholar 

  • Fitzpatrick, L. C., Muratti-Ortiz, J. F., Venables, B. J. and Goven, A. J.: 1996, ‘Comparative Toxicity in Earthworms Eisenia fetida and Lumbricus terrestris Exposed to Cadmium Nitrate using Artificial Soil and Filter Paper Protocols’, Bull. Environ. Contam. Toxicol. 57, 63–68.

    Google Scholar 

  • Greene, J. C., Miller, W. E., Debacon, M. K., Long, M. A. and Bartels, C. L.: 1985, ‘A Comparison of Three Microbial Assay Procedures for measuring Toxicity of Chemical Residues’, Arch. Environ. Contam. Toxicol. 14, 659–667.

    Google Scholar 

  • Hatzinger, P. B. and Alexander, M.: 1995, ‘Effect of Ageing of Chemicals in Soil on their Biodegradability and Extractability’, Environ. Sci. Technol. 29, 537–545.

    Google Scholar 

  • Holm, P. E., Christensen, T. H., Lorenz, S. E., Hamon, R. E., Domingues, H. C., Sequeira, E. M. and McGrath, S. P.: 1998, ‘Measured Soil Water Concentrations of Cadmium and Zinc and Plant Plots and Estimated Leaching Outflows from Contaminated Soils’, Water, Air, and Soil Pollut. 102, 105–115.

    Google Scholar 

  • Keddy, C. J., Greene, J. C. and Bonnell, M. A.: 1995, ‘Review of Whole-Organism Bioassays: Soil, Freshwater Sediment, and Freshwater Assessment in Canada’, Ecotoxicol. Environ. Saf. 30, 221–251.

    Google Scholar 

  • Kelsey, J. W., Kottler, B. D. and Alexander, M.: 1997, ‘Selective Chemical Extractants to Predict Bioavailability of Soil Aged Organic Chemicals’, Environ. Sci. Technol. 31, 214–217.

    Google Scholar 

  • Landrum, P. F., Dupuis, W. S. and Kukkonen, J.: 1994, ‘Toxicokinetics and Toxicity of Sediment-Associated Pyrene and Phenanthrene in Diporeia spp.: Examination of Equalibrium-Partitioning Theory and Residue-Based Effects for Assessing Hazard’, Environ, Toxicol. Chem. 13, 1769–1780.

    Google Scholar 

  • Lebourg, A., Sterckeman, T., Ciesietski, H. and Proix, N.: 1996, ‘Suitability of Chemical Extraction to Assess Risks of Toxicity Induced by Soil Trace Metal Bioavailability’, Agronomie 16, 201–216 (in French).

    Google Scholar 

  • Liptak, J. F. and Lombardo, G.: 1996, ‘The Development of Chemical-Specific, Risk-Based Soil Cleanup Guidelines Results in Timely and Cost-Effective Remediation’, J. Soil Contam. 5, 83–94.

    Google Scholar 

  • Loehr, R. C. and Webster, M. T.: 1996, ‘Behaviour of Fresh vs. Aged Chemicals in Soil’, J. Soil Contam. 5, 361–383.

    Google Scholar 

  • Ma, L. Q. and Rao, G. N.: 1997, ‘Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils’, J. Environ. Qual. 26, 259–264.

    Google Scholar 

  • Madill, R. E. A., Brownlee, B. G., Josephy, P. D. and Bunce, N. J.: 1999, ‘Comparison of the Ames Salmonella Assay and Mutatox Genotoxicity Assay for Assessing the Mutagenicity of Polycyclic Aromatic Compounds in Porewater from Athabasca Oils Sands Mature Fine Tailings’, Environ. Sci. Technol. 33, 2510–2516.

    Google Scholar 

  • Miller, W. E., Peterson, S. A., Greene, J. C. and Callahan, C. A.: 1985, ‘Comparative Toxicology of Laboratory Organisms for Assessing Hazardous Waste Sites’, J. Environ. Qual. 14, 569–574.

    Google Scholar 

  • Nirmalakhandan, N., Arulgnanendran, V., Mohsin, M., Sun, B. and Cadena, F.: 1994, ‘Toxicity of Mixtures of Organic Chemicals to Microorganisms’, Water Res. 28, 543–551.

    Google Scholar 

  • Nublein, F., Feicht, E. A., Schulte-Hostede, S. and Kettrup, A.: 1994, ‘Proposal on a Standardized Water Risk Assessment of Toxic Substances in Soil’, Chemosphere 28, 219–228.

    Google Scholar 

  • Paton, G. I., Campbell, C. D., Glover, L. A. and Killham, K.: 1995a, ‘Assessment of Bioavailability of Heavy Metals using lux-Modified Constructs of Pseudomonas fluorescens’, Lett. Appl. Microbiol. 20, 52–57.

    Google Scholar 

  • Paton, G. I., Palmer, G., Kindness, A., Campbell, C., Glover, L. A. and Killham, K.: 1995b, ‘Use of Luminescence-Marked Bacteria to Assess Copper Bioavailability in Malt Whisky Distillery Effluent’, Chemosphere 31, 3217–3224.

    Google Scholar 

  • Pollard, S. J. and Hrudey, S. E.: 1992, ‘Hydrocarbon Wastes at Petroleum-and Creosote-Contaminated Sites: Rapid Characterization of Component Classes by Thin-Layer Chromatography with Flame Ionization Detection’, Environ. Sci. Technol. 26, 2528–2534.

    Google Scholar 

  • Pollard, S. J. T., Hrydey, S. E. and Fedorak, P. M.: 1994, ‘Bioremediation of Petroleum-and Creosote-Contaminated Soils: A Review of Constraints’, Waste Manage. and Res. 12, 173–194.

    Google Scholar 

  • Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Jackson, L. M. R., Vipond, T. E., Western, M. M. and Wisniewski, H. L.: 1997, ‘Crude Oil Hydrocarbon Bioremediation and Soil Ecotoxicity Assessment’, Environ. Sci. Technol. 31, 1769–1776.

    Google Scholar 

  • Simonis, A. D.: 1996a, ‘Effect of Temperature on Extraction of Phosphorus and Potassium from Soils by Various Extracting Solutions’, Comm. Soil Sci. Plant Anal. 27, 665–684.

    Google Scholar 

  • Simonis, A. D.: 1996b, ‘Effects of pH and Solvent/Soil Ratio on Extraction of Phosphorus from Soils by Various Extracting Solutions’, Comm. Soil. Sci. Plant Anal. 27, 935–958.

    Google Scholar 

  • Sousa, S., Duffy, C., Weitz, H., Glover, L. A., Bar, E., Henkler, R. and Killham, K.: 1998, ‘Use of a lux-Modified Bacterial Biosensor of Identify Constraints to Bioremediation of BTEX-Contaminated Sites’, Environ. Toxicol. Chem. 17, 1039–1045.

    Google Scholar 

  • Tiehm, A., Stieber, M., Werner, R. and Frimmel, F. H.: 1997, ‘Surfactant Enhanced Mobilization and Biodegradation of Polycyclic Aromatic Hydrocarbons in Manufactured Gas Plant Soil’, Environ. Sci. Technol. 31, 2570–2576.

    Google Scholar 

  • Twerdok, L. E.: 1999, ‘Development of Toxicity Criteria for Petroleum Hydrocarbon Fractions in the Petroleum Hydrocarbon Criteria Working Group Approach for Risk-Based Management of Total Petroleum Hydrocarbons in Soil’, Drug and Chem. Toxicol. 22, 275–291.

    Google Scholar 

  • Wang, W.: 1984, ‘Root Elongation Method for Toxicity Testing of Organic and Inorganic Pollutants’, Environ. Toxicol. Chem. 6, 409–414.

    Google Scholar 

  • Wang, X. and Bartha, R.: 1990, ‘Effects of Bioremediation on Residues, Activity and Toxicity in Soil Contaminated by Fuel Spills’, Soil Biol. and Biochem. 22, 501.

    Google Scholar 

  • Whittaker, M. and Pollard, S. J. T.: 199, ‘Characterization of Refractory Wastes at Hydrocarbon Contaminated Sites: 1. Rapid Column Fractionation and Thin Layer Chromatography of Reference Oils’, J. Planar Chromatography 354–361.

  • Zemanek, M. G., Pollard, S. J., Kenefick, S. L. and Hrudey, S. E.: 1997, ‘Toxicity and Mutagenicity of Component Classes of Oils Isolated from Soils at Petroleum-and Creosote-Contaminated Sites’, J. Air and Waste Manage. Assoc. 47, 1250–1258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, S.V., Chu, A. & Goodman, R.H. Leachability and Toxicity of Hydrocarbons, Metals and Salt Contamination from Flare Pit Soil. Water, Air, & Soil Pollution 133, 297–314 (2002). https://doi.org/10.1023/A:1012925812698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012925812698

Navigation