Skip to main content

Pattern analysis of genotype × environment interaction for striga resistance and grain yield in African sorghum trials

Abstract

The parasitic weed Striga hermonthica (Del.) Benth. seriously limits sorghum [Sorghum bicolor (L.) Moench] production in Sub-Saharan Africa. As an outbreeder, S. hermonthica is highly variable with an extraordinary capacity to adapt to different hosts and environments, thereby complicating resistance breeding. To study genotype x environment (G x E) interaction for striga resistance and grain yield, nine sorghum lines, 36 F2 populations and five local checks were grown under striga infestation at two locations in both Mali and Kenya. Mean squares due to genotypes and G x E interaction were highly significant for both sorghum grain yield and area under striga severity progress curve(ASVPC, a measure of striga emergence and vigor throughout the season). For grain yield, the entry x location-within-country interaction explained most of the total G x E while for ASVPC, entry x country and entry x location-within-country interactions were equally important. Pattern analysis (classification and ordination techniques) was applied to the environment-standardized matrix of entry x environment means. The classification clearly distinguished Malian from Kenyan locations for ASVPC, but not for grain yield. Performance plots for different entry groups showed differing patterns of adaptation. The ordination biplot underlined the importance of entry x country interaction for ASVPC. The F2 derived from the cross of the striga-resistant line Framida with the striga-tolerant cultivar Seredo was the superior entry for both grain yield and ASVPC, underlining the importance of combining resistance with tolerance in striga resistance breeding. The observed entry x country interaction for ASVPC may be due to the entries' different reactions to climatic conditions and putative differences in striga virulence in Mali and Kenya.

This is a preview of subscription content, access via your institution.

References

  • Allard, R., 1960. Principles of plant breeding. JohnWiley and Sons, New York.

    Google Scholar 

  • Bebawi, F.F., 1981. Intraspecific physiological variants of Striga hermonthica. Exp Agric 17: 419.

    Article  Google Scholar 

  • Brown, K.D., M.E. Sorrells & W.R. Coffman, 1983. A method for classification and evaluation of testing environments. Crop Sci 23: 889–893.

    Article  Google Scholar 

  • Butler, L.G., 1995. Chemical communication between the parasitic weed Striga and its crop host, a new dimension in allelochemistry. In: K.M.M.I. Dakshini & F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications, pp. 158–168. Washington, USA, American Chemical Society.

    Google Scholar 

  • DeLacy, I.H., K.E. Basford, M. Cooper, J.K. Bull & C.G. Mclaren. 1996. Analysis of multi-environment trials - an historical persepective. In: M. Cooper & G.L. Hammer (Eds.), Plant Adaptation and Crop Improvement, pp. 39–124. CAB International, Oxon, UK.

    Google Scholar 

  • DeVries, J.D., 2000. The inheritance of striga reactions in maize. In: B.I.G. Haussmann, D.E. Hess, M.L. Koyama, L. Grivet, H.F.W. Rattunde & H.H. Geiger (Eds.), Breeding for Striga Resistance in Cereals, pp. 73–81. Margraf Verlag, Weikersheim, Germany.

    Google Scholar 

  • Dixon, N.H. & C. Parker, 1984. Aspects of resistance of sorghum varieties to Striga species. In: C. Parker, L.J. Musselman, R.M. Polhill & A.K. Wilson (Eds.), Proc., Third Int. Symp. on Parasitic Weeds, Aleppo, Syria, pp. 123–132. ICARDA, P.O. Box 5466, Aleppo, Syria.

  • Ejeta, G. & L.G. Butler, 1993. Host plant resistance to Striga. In: International Crop Science I, 1993, pp. 561–569. Crop Sci Soc of America, Madison, WI.

    Google Scholar 

  • Ejeta, G., L.G. Butler & A.G. Babiker, 1992. New approaches to the control of Striga. Striga Research at Purdue University. Research Bulletin RB-991. Agricultural Experiment Station. Purdue University. West Lafayette, IN.

    Google Scholar 

  • Fox, P.N. & A.A. Rosielle, 1982. Reducing the influence of environmental main effects on pattern analysis of plant breeding environments. Euphytica 31: 645–656.

    Article  Google Scholar 

  • Freitag, J., D.E. Hess, H.G. Welz, & H.H. Geiger, 1996. Pearl millet and sorghum specific races of Striga hermonthica in Niger. In: M.T. Moreno, J.I. Cubero, D. Berner, D. Joel, L.J. Musselman & C. Parker (Eds.), Advances in Parasitic Plant Research, Proc. 6th Int. Parasitic Weed Symp., April 16–18, 1996, Cordoba, Spain, pp. 472–478. Junta de Andalucia, Congresos y Jornadas 36/96, Sevilla.

  • Haussmann, B.I.G., D.E. Hess, G.O. Omanya, B.V.S. Reddy, H.G. Welz & H.H. Geiger. 2001a. Major and minor genes for stimulation of Striga hermonthica seed germination in sorghum, and interaction with different striga populations. Crop Sci. 41(5), in press.

  • Haussmann, B.I.G., D.E. Hess, H.G. Welz & H.H. Geiger, 2000. Improved methodologies for breeding striga-resistant sorghums. Field Crops Res 66: 195–211.

    Article  Google Scholar 

  • Haussmann, B.I.G., D.E. Hess, B.V.S. Reddy, S.Z. Mukuru, M. Kayentao, H.G. Welz & H.H. Geiger, 2001b. Quantitativegenetic parameters of sorghum growth under striga infestation in Mali and Kenya. Plant Breeding, 120: 49–56.

    Article  Google Scholar 

  • Hess, D.E., 1994. Crop specific strains of Striga hermonthica in Niger. Phytopathology 84: 1151.

    Google Scholar 

  • Hess, D.E., G. Ejeta & L.G. Butler, 1992: Selecting genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochem 31: 493–497.

    Article  CAS  Google Scholar 

  • Kempton, R.A., 1984. The use of biplots in interpreting variety by environment interactions. J Agric Sci 103: 123–135.

    Google Scholar 

  • Koyama, M.L., 2000a. Molecular markers for the study of pathogen variability: implications for breeding resistance to Striga hermonthica. In: B.I.G. Haussmann et al. (Eds.), Breeding for Striga Resistance in Cereals, pp. 227–245. Margraf Verlag, Weikersheim, Germany.

    Google Scholar 

  • Koyama, M.L., 2000b. Genetic variability of Striga hermonthica and effect of resistant sorghum cultivars on population dynamics. In: B.I.G. Haussmann et al. (Eds.), Breeding for Striga Res istance in Cereals, pp. 247–260. Margraf Verlag, Weikersheim, Germany.

    Google Scholar 

  • Lin, C.S. & G. Butler, 1988. A data-based approach for selecting locations for regional trials. Can J Plant Sci 68: 651–659.

    Article  Google Scholar 

  • Maiti, R.K., K.V. Ramaiah, S.S. Bisen & V.L. Chidley, 1984. A comparative study of the haustorial development of Striga asiatica (L.) Kuntze on sorghum cultivars. Annals of Botany 54: 447–457.

    Google Scholar 

  • Moreno-Gonzáles, J. & J.I. Cubero, 1993. Selection strategies and choice of breeding methods. In: M.D. Hayward, N.O. Bosemark & I. Romagosa (Eds.): Plant Breeding: Principles and Prospects, pp. 81–313. Chapman & Hall, London.

    Google Scholar 

  • Obilana, A.T., 1984. Inheritance of resistance to Striga (Striga hermonthica Benth.) in sorghum. Prot Ecol 7: 305–311.

    Google Scholar 

  • Pham, H.N. & G.O. Edmeades, 1987. Delineating maize production environments in developing countries. In: CIMMYT Research Highlights 1986, pp. 3–11. CIMMYT, Mexico, D.F.

    Google Scholar 

  • Ramaiah, K.V., 1984. Patterns of Striga resistance in sorghum and millets with special emphasis on Africa. In: Proc. Int. Workshop Biology and Control of Striga, Dakar, Senegal, 14–17 November 1983, pp. 71–92. ICSU Press, France.

    Google Scholar 

  • Ramaiah, K.V., 1987. Breeding cereal grains for resistance to witchweed. In: L.J. Musselman (Ed.), Parasitic Weeds in Agriculture, Vol. I Striga, pp. 227–242. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ramaiah, K.V. & C. Parker, 1982. Striga and other weeds in sorghum. In: L.R. House, L.K. Mughogho & J.M. Peacock (Eds.), Sorghum in the Eighties, Vol. 1, Proc. Int. Symp. Sorghum, pp. 291–302. ICRISAT, Patancheru, India.

    Google Scholar 

  • Rattunde, H.F.W., A.B. Obilana, B.I.G. Haussmann, B.V.S. Reddy & D.E. Hess, 2000. Breeding sorghum for striga resistance at ICRISAT: progress and perspectives. In: B.I.G. Haussmann et al. (Eds.), Breeding for Striga Resistance in Cereals, pp. 85–93. Margraf Verlag, Weikersheim, Germany.

    Google Scholar 

  • Romagosa, I. & P.N. Fox, 1993. Genotype + environment interaction and adaptation. In: M.D. Hayward, N.O. Bosemark & I. Romagosa (Eds.), Plant Breeding: Principles and Prospects, pp. 373–390. Chapman & Hall, London.

    Google Scholar 

  • Sauerborn, J., 1991. The economic importance of the phytoparasites Orobanche and Striga. In: J.K. Ransom, L.J. Musselman, A.D. Worsham & C. Parker (Eds.), Proc., 5th Int. Symp. Parasitic Weeds, pp. 137–143. CIMMYT, Nairobi, Kenya.

    Google Scholar 

  • Sauerborn, J., 1999. Striga biology versus control. In: J. Kroschel, H. Mercer-Quarshie & J. Sauerborn (Eds.), Advances in Parasitic Weed Control at On-Farm Level, Vol. 1, Joint Action to Control Striga in Africa, pp. 59–72. Margraf Verlag, Weikersheim, Germany.

    Google Scholar 

  • Searle, S.R., 1971. Linear Models. JohnWiley and Sons, New York.

    Google Scholar 

  • Shaner, G. & R.E. Finney, 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67: 1051–1056.

    Article  CAS  Google Scholar 

  • Sherif, A.M. & C. Parker, 1990. Highlights of the striga control research with particular reference to varietal resistance. In: Proc 6th EARSAM Regional Workshop on Sorghum and Millet Improvement in Eastern Africa, pp. 201–211. EARSAM and OAU/SAFGRAD/ICRISAT, Nairobi, Kenya.

  • Snedecor, G.W. & W.G. Cochran. 1980. Statistical Methods. 7th ed. Iowa State Univ Press, Ames, Iowa.

    Google Scholar 

  • Utz, H.F., 1998. PLABSTAT: A computer program for the statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart.

    Google Scholar 

  • Vasudeva Rao, M.J. & L.J. Musselman, 1987. Host specificity in Striga spp. and physiological strains. In: L.J. Musselman (Ed.), Parasitic Weeds in Agriculture, Vol. I, Striga, pp. 13–25. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58: 236–244.

    Article  Google Scholar 

  • Watson, S.H., I.H. DeLacy, D.W. Podlich & K.E. Basford, 1996. GEBEI. An analysis package using agglomerative hierarchical classificatory and SVD ordination procedures for genotype x environment data. Research Report #57, Dept of Mathematics, Univ of Queensland, Brisbane, Australia. http://biometrics.ag.uq.edu.au/software.htm.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haussmann, B., Hess, D., Reddy, B. et al. Pattern analysis of genotype × environment interaction for striga resistance and grain yield in African sorghum trials. Euphytica 122, 297–308 (2001). https://doi.org/10.1023/A:1012909719137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012909719137

  • genotype × environment interaction
  • Kenya
  • Mali
  • Sorghum bicolor
  • Striga hermonthica
  • resistance