## Abstract

In this paper, we review the development of the Runge–Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge–Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of *numerical fluxes* and *slope limiters* coined during the remarkable development of the *high-resolution* finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier–Stokes equations, and Hamilton–Jacobi-like equations.

### Similar content being viewed by others

## REFERENCES

R. Abgrall, (1996). Numerical discretization of the first-order Hamilton-Jacobi equations on triangular meshes.

*Comm*.*Pure Appl*.*Math*.**49**, 1339–1377.Adjerid, S., Aiffa, M., and Flaherty, J. E. (1998). Computational methods for singularly perturbed systems. In Cronin, J., and O'Malley, R. E. (eds.),

*Singular Perturbation Concepts of Differential Equations*, AMS Proceedings of Symposia in Applied Mathematics, AMS.Adjerid, S., Aiffa, M., and Flaherty, J. E. (1995). High-order finite element methods for singularly-perturbed elliptic and parabolic problems.

*SIAM J*.*Appl*.*Math*.**55**, 520–543.Adjerid, S., Flaherty, J. E., and Krivodonova, L. Superconvergence and a posteriori error estimation for continuous and discontinuous Galerkin methods applied to singularly perturbed parabolic and hyperbolic problems, in preparation.

Aizinger, V., Dawson, C. N., Cockburn, B., and Castillo, P. (2000). Local discontinuous Galerkin method for contaminant transport.

*Advances in Water Resources***24**, 73–87.Allmaras, S. R. (1989).

*A Coupled Euler/Navier-Stokes Algorithm for 2-D Unsteady Transonic Shock/Boundary-Layer Interaction*, Ph.D. thesis, Massachussetts Institute of Technology.Allmaras, S. R., and Giles, M. B. (1987).

*A Second Order Flux Split Scheme for the Unsteady 2-D Euler Equations on Arbitrary Meshes*, 8th. AIAA Computational Fluid Dynamic Conference, Honolulu, Hawai, June 9–11.*TIAIAA*, 87–1119-CP.Alotto, P., Bertoni, A., Perugia, I., and Schötzau, D. (2000). Discontinuous finite element methods for the simulation of rotating electrical machines,

*Proceedings of 9th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering*, September 11–14, Graz, Austria.Arnold, D. N. (1982). An interior penalty finite element method with discontinuous elements.

*SIAM J*.*Numer*.*Anal*.**19**, 742–760.Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, D. Unified analysis of discontinuous Galerkin methods for elliptic problems.

*SIAM J*.*Numer*.*Anal*., to appear.Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, D. (2000). Discontinuous Galerkin methods for elliptic problems. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 89–101.Atkins H. L., and Shu, C.-W. (1998). Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations.

*AIAA J*.**36**, 775–782.Augoula, S., and Abgrall, R. (2000). High order numerical discretization for Hamilton-Jacobi equations on triangular meshes.

*J*.*Sci*.*Comput*.**15**, 197–229.Babuška, I., and Zlámal, M. (1973). Nonconforming elements in the finite element method with penalty.

*SIAM J*.*Numer*.*Anal*.**10**, 863–875.Baker, G. A. (1977). Finite element methods for elliptic equations using nonconforming elements.

*Math*.*Comp*.**31**, 45–59.Baker, G. A., Jureidini, W. N., and Karakashian, O. A. (1990). Piecewise solenoidal vector fields and the Stokes problem.

*SIAM J*.*Numer*.*Anal*.**27**, 1466–1485.Bardos, C., LeRoux, A. Y., and Nédélec, J. C. (1979). First order quasilinear equations with boundary conditions.

*Comm*.*in P*.*D*.*E*.**4**, 1017–1034.Bassi, F., and S. Rebay, (1997). A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations.

*J*.*Comput*.*Phys*.**131**, 267–279.Bassi, F., and S. Rebay, (1997). High-order accurate discontinuous finite element solution of the 2DEuler equations.

*J*.*Comput*.*Phys*.**138**, 251–285.Bassi, F., and S. Rebay, (2000). GMRES for discontinuous Galerkin solution of the compressible Navier-Stokes equations. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 197–208.Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., and Savini, M. (1997). A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In Decuypere, R., and Dibelius, G. (eds.),

*2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (Antwerpen, Belgium), March 5–7, Technologisch Instituut, pp*.*99–108*.Baumann, C. E., and Oden, J. T. (1999). A discontinuous

*hp*finite element method for convection-diffusion problems.*Comput*.*Methods Appl*.*Mech*.*Engrg*.**175**, 311–341.Bernardi, C., Maday, Y., and Patera, A. T. (1993). Domain decomposition by the mortar element method. In Kaper, H. G., and Garbey, M. (eds.),

*Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters*, Kluwer Academic Publishers, pp. 269–286.Bernardi, C., Maday, Y., and Patera, A. T. (1994). A new nonconforming approach to domain decomposition: The mortar element method. In Brézis, H., and Lions, J. L. (eds.),

*Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Volume XI*, Pitman Research Notes in Mathematics, No. 299, Pitman Advanced Publishing Program.Bernardi, C., Debit, N., and Maday, Y. (1990). Coupling finite element and spectral methods: First results.

*Math*.*Comp*.**54**, No. 189, 21–39.Biswas, R., Devine, K. D., and Flaherty, J. (1994). Parallel, adaptive finite element methods for conservation laws.

*Appl*.*Numer*.*Math*.**14**, 255–283.Bourgeat, A., and Cockburn, B. (1989). The TVD-projection method for solving implicit numerical schemes for scalar conservation laws: A numerical study of a simple case.

*SIAM J*.*Sci*.*Stat*.*Comput*.**10**, 253–273.Bramble, J. H., and Schatz, A. H. (1977). Higher order local accuracy by averaging in the finite element method.

*Math*.*Comp*.**31**, 94–111.Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A., (2000). Discontinuous Galerkin approximations for elliptic problems.

*Numer*.*Methods Partial Differential Equations***16**, 365–378.Brezzi, F., Marini, D., Pietra, P., and Russo, A. (1999). Discontinuous finite elements for diffusion problems, Atti Convegno in onore di F. Brioschi (Milano 1997), Istituto Lombardo, Accademia di Scienze e Lettere, pp. 197–217.

Castillo, P. (2000). An optimal error estimate for the local discontinuous Galerkin method. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 285–290.Castillo, P., Cockburn, B., Perugia, I., and Schötzau, D., (2000). An a priori error analysis of the local discontinuous Galerkin method for elliptic problems.

*SIAM J*.*Numer*.*Anal*.**38**, 1676–1706.Castillo, P., Cockburn, B., Schötzau, D., and Schwab, C. An optimal a priori error estimate for the

*hp*-version of the local discontinuous Galerkin method for convectiondiffusion problems.*Math*.*Comp*., to appear.Chavent, G., and Cockburn, B. (1989). The local projection

*TIP*^{0}*P*^{1}-discontinuous-Galerkin finite element method for scalar conservation laws.*RAIRO Modél*.*Math*.*Anal*.*Numér*.**23**, 565–592.Chavent, G., and Salzano, G. (1982). A finite element method for the 1Dwater flooding problem with gravity.

*J*.*Comput*.*Phys*.**45**, 307–344.Chen, Z., Cockburn, B., Gardner, C., and Jerome, J. (1995). Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode.

*J*.*Comput*.*Phys*.**117**, 274–280.Chen, Z., Cockburn, B., Jerome, J., and Shu, C.-W. (1995). Mixed-RKDG finite element methods for the 2-Dhydrodynamic model for semiconductor device simulation.

*VLSI Design***3**, 145–158.Cockburn, B. (1999). Discontinuous Galerkin methods for convection-dominated problems. In Barth, T., and Deconink, H. (eds.),

*High-Order Methods for Computational Physics*, Lecture Notes in Computational Science and Engineering, Vol. 9, Springer-Verlag, pp. 69–224.Cockburn, B. (2001). Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws.

*J*.*Comput*.*Appl*.*Math*.**128**, 187–204.Cockburn, B., and Gremaud, P. A. (1996). Error estimates for finite element methods for nonlinear conservation laws.

*SIAM J*.*Numer*.*Anal*.**33**, 522–554.Cockburn, B., Hou, S., and Shu, C.-W. (1990). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case.

*Math*.*Comp*.**54**, 545–581.Cockburn, B., Kanschat, G., Perugia, I., and Schötzau, D. (2001). Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids.

*SIAM J*.*Numer*.*Anal*.**39**, 264–285.Cockburn, B., Kanschat, G., Schötzau, D., and Schwab, C. Local discontinuous Galerkin methods for the Stokes system.

*SIAM J*.*Numer*.*Anal*., to appear.Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (2000). The development of discontinuous Galerkin methods. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 3–50.Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.) (2000).

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag.Cockburn, B., Lin, S. Y., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems.

*J*.*Comput*.*Phys*.**84**, 90–113.Cockburn, B., Luskin, M., Shu, C.-W., and Süli, E. Enhanced accuracy by post-processing for finite element methods for hyperbolic equations,

*Math*.*Comp*., to appear.Cockburn, B., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework.

*Math*.*Comp*.**52**, 411–435.Cockburn, B., and Shu, C.-W. (1991). The Runge-Kutta local projection

*TIP*^{1}-discontinuous Galerkin method for scalar conservation laws.*RAIRO Modél*.*Math*.*Anal*.*Numér*.**25**, 337–361.Cockburn, B., and Shu, C.-W. (1998). The local discontinuous Galerkin method for timedependent convection-diffusion systems.

*SIAM J*.*Numer*.*Anal*.**35**, 2440–2463.Cockburn, B., and Shu, C.-W. (1998). The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems.

*J*.*Comput*.*Phys*.**141**(1998), 199–224.Crandall, M., and Majda, A. (1980). Monotone difference approximations for scalar conservation laws.

*Math*.*Comp*.**34**, 1–21.Crandall, M. G., and Lions, P. L. (1983). Viscosity solutions of Hamilton-Jacobi equations.

*Trans*.*Amer*.*Math*.*Soc*.**277**, 1–42.Dawson, C. N. (1995). High resolution upwind-mixed finite element methods for advection-diffusion equations with variable time-stepping.

*Numer*.*Methods Partial Differential Equations***11**, 525–538.Dawson, C. N., and Kirby, R. (2001). High resolution schemes for conservation laws with locally varying time steps.

*SIAM J*.*Math*.*Anal*.**22**, 2256–2281.Douglas, Jr., J., Darlow, B. L., Kendall, R. P., and Wheeler, M. F. (1979). Self-adaptive Galerkin methods for one-dimensional, two-phase immiscible flow,

*AIME Fifth Simposium on Reservoir Simulation (Denver, Colorado)*, Society of Petroleum Engineers, pp. 65–72.Douglas, Jr., J., and Dupont, T. (1976).

*Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods*, Lecture Notes in Physics, Vol. 58, Springer-Verlag, Berlin.Dubiner, M. (1991). Spectral methods on triangles and other domains.

*J*.*Sci*.*Comp*.**6**, 345–390.Falk, R. (2000). Analysis of finite element methods for linear hyperbolic problems. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 103–112.Feng, X., and Karakashian, O. A. Two-level non-overlapping schwarz methods for a discontinuous Galerkin method.

*SIAM J*.*Numer*.*Anal*., to appear.Flaherty, J. E., Loy, R. M., Shephard, M. S., Szymanski, B. K., Teresco, J. D., and Ziantz, L. H. (1997). Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws.

*J*.*Parallel and Dist*.*Comput*.**47**, 139–152.Gopalakrishnan, J., and Kanshat, G. A multilevel discontinuous Galerkin method.

*Numer*.*Math*., to appear.Gottlieb, S., and Shu, C.-W. (1998). Total variation diminishing Runge-Kutta schemes.

*Math*.*Comp*.**67**, 73–85.Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability preserving high order time discretization methods.

*SIAM Rev*.**43**, 89–112.Halt, D. W. (1992).

*A Compact Higher Order Euler Solver for Unstructured Grids*, Ph.D. thesis, Washington University.Halt, D. W., and Agarwall, R. K. (1991). A compact higher order characteristic-based Euler solver for unstructured grids.

*AIAA*, 91–3234.Halt, D. W., and Agarwall, R. K. (1992). A compact higher order Euler solver for unstructured grids with curved boundaries.

*AIAA*, 92–2696.Harten, A. (1983). High resolution schemes for hyperbolic conservation laws.

*J*.*Comput*.*Phys*.**49**, 357–393.Harten, A., Hyman, J. M., and Lax, P. D. (1976). On finite difference approximations and entropy conditions for shocks.

*Comm*.*Pure and Appl*.*Math*.**29**, 297–322.Houston, P., Schwab, C., and Süli, E. (2000). Stabilized

*hp*-finite element methods for hyperbolic problems.*SIAM J*.*Numer*.*Anal*.**37**, 1618–1643.Hu, C., Lepsky, O., and Shu, C.-W. (2000). The effect of the lest square procedure for discontinuous Galerkin methods for Hamilton-Jacobi equations. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 343–348.Hu, C., and Shu, C.-W. (1999). A discontinuous Galerkin finite element method for Hamilton-Jacobi equations.

*SIAM J*.*Sci*.*Comput*.**21**, 666–690.Jaffré, J., Johnson, C., and Szepessy, A. (1995). Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws.

*Math*.*Models Methods Appl*.*Sci*.**5**, 367–386.Jiang, G., and Shu, C.-W. (1994). On a cell entropy inequality for discontinuous Galerkin methods.

*Math*.*Comp*.**62**, 531–538.Jiang, G.-S., and Peng, D.-P. (2000). Weighted ENO schemes for Hamilton-Jacobi equations.

*SIAM J*.*Sci*.*Comput*.**21**, 2126–2143.Jin, S., and Xin, Z.-P. (1998). Numerical passage from systems of conservation laws to Hamilton-Jacobi equation.

*SIAM J*.*Numer*.*Anal*.**35**, 2385–2404.Johnson, C., and Pitkäranta, J. (1986). An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation.

*Math*.*Comp*.**46**, 1–26.Karniadakis, G. E., and Sherwin, S. J. (1999).

*Spectral/hp Element Methods in CFD*, Oxford University Press.Kuznetsov, N. N. (1976). Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation.

*USSR Comp*.*Math*.*and Math*.*Phys*.**16**, 105–119.Lafon, F., and Osher, S. (1996). High-order 2-dimensional nonoscillatory methods for solving Hamilton-Jacobi scalar equations.

*J*.*Comput*.*Phys*.**123**, 235–253.Lasser, C., and Toselli, A. (2000).

*An Overlapping Domain Decomposition Preconditioner for a Class of Discontinuous Galerkin Approximations of Advection-Diffusion Problems*, Tech. Report 2000–12, Seminar für Angewandte Mathematik, ETH Zürich.Lepsky, O., Hu, C., and Shu, C.-W. (2000). Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations.

*Appl*.*Numer*.*Math*.**33**, 423–434.LeSaint, P., and Raviart, P. A. (1974). On a finite element method for solving the neutron transport equation. In de Boor, C. (ed.),

*Mathematical Aspects of Finite Elements in Partial Differential Equations*, Academic Press, pp. 89–145.LeVeque, R. J. (1990).

*Numerical Methods for Conservation Laws*, Birkhäuser.Lin, Q. (2000). Full convergence for hyperbolic finite elements. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 167–177.Lin, Q., Yan, N., and Zhou, A.-H. (1996). An optimal error estimate of the discontinuous Galerkin method.

*J*.*Engrg*.*Math*.**13**, 101–105.Lin, Q., and Zhou, A.-H. (1993). Convergence of the discontinuous Galerkin method for a scalar hyperbolic equation.

*Acta Math*.*Sci*.**13**, 207–210.Liu, J.-G., and Shu, C.-W. (2000). A high order discontinuous Galerkin method for 2D incompressible flows.

*J*.*Comput*.*Phys*.**160**, 577–596.Liu, J.-G., and Shu, C.-W. (2000). A numerical example on the performance of highorder discontinuous Galerkin method for 2Dincompressible flows. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 369–374.Liu, J.-G., and Xin, Z.-P. (2000). Convergence of a Galerkin method for 2Ddiscontinuous Euler flows.

*Comm*.*Pure Appl*.*Math*.**53**, 786–798.Lomtev, I., Kirby, R. M., and Karniadakis, G. E. (2000). A discontinuous Galerkin method in moving domains. In Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (eds.),

*Discontinuous Galerkin Methods*.*Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer-Verlag, pp. 375–383.Oden, J. T., Babuška, I., and Baumann, C. E. (1998). A discontinuous

*hp*finite element method for diffusion problems.*J*.*Comput*.*Phys*.**146**, 491–519.Osher, S. (1984). Convergence of generalized MUSCL schemes.

*SIAM J*.*Numer*.*Anal*.**22**, 947–961.Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations.

*J*.*Comput*.*Phys*.**79**, 12–49.Osher, S., and Shu, C.-W. (1991). High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations.

*SIAM J*.*Numer*.*Anal*.**28**, 907–922.Perugia, I. and Schötzau, D. The coupling of local discontinuous Galerkin and conforming finite element methods.

*J*.*Sci*.*Comput*., to appear.Peterson, T. (1991). A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation.

*SIAM J*.*Numer*.*Anal*.**28**, 133–140.Reed, W. H., and Hill, T. R.

*Triangular Mesh Methods for the Neutron Transport Equation*, Tech. Report LA-UR–73–479, Los Alamos Scientific Laboratory, 1973.Richter, G. R. (1988). An optimal-order error estimate for the discontinuous Galerkin method.

*Math*.*Comp*.**50**, 75–88.Rivière, B., Wheeler, M. F., and Girault, V. (1999). Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I.

*Comput*.*Geom*.**3**, 337–360.Rouy, E., and Tourin, A. (1992). A viscosity solutions approach to shape-from-shading.

*SIAM J*.*Numer*.*Anal*.**29**, 867–884.Sanders, R. (1983). On convergence of monotone finite difference schemes with variable spacing differencing.

*Math*.*Comp*.**40**, 91–106.Schwab, C. (1999).

*hp*-FEM for fluid flow simulation. In Barth, T., and Deconink, H. (eds.),*High-Order Methods for Computational Physics*, Lecture Notes in Computational Science and Engineering, Vol. 9, Springer-Verlag, pp. 325–438.Shu, C.-W. (1987). TVB boundary treatment for numerical solutions of conservation laws.

*Math*.*Comp*.**49**, 123–134.Shu, C.-W. (1987). TVB uniformly high order schemes for conservation laws.

*Math*.*Comp*.**49**, 105–121.Shu, C.-W. (1987). TVDtime discretizations.

*SIAM J*.*Sci*.*Stat*.*Comput*.**9**(1988), 1073–1084.Shu, C.-W. (2001). Different formulations of the discontinuous Galerkin method for the viscous terms. In Shi, Z.-C., Mu, M., Xue, W., and Zou, J. (eds.),

*Advances in Scientific Computing*, Science Press, pp. 144–155.Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes.

*J*.*Comput*.*Phys*.**77**, 439–471.Shu, C.-W., and Osher, S. (1989). Efficient implementation of essentially non-oscillatory shock capturing schemes, II.

*J*.*Comput*.*Phys*.**83**, 32–78.Strang, G., and Fix, G. (1973).

*An Analysis of the Finite Element Method*, Prentice-Hall, New Jersey.van Leer, B. (1974). Towards the ultimate conservation difference scheme, II.

*J*.*Comput*.*Phys*.**14**, 361–376.van Leer, B. (1979). Towards the ultimate conservation difference scheme, V.

*J*.*Comput*.*Phys*.**32**, 1–136.Warburton, T. C. (1998).

*Spectral/hp Methods on Polymorphic Multi-Domains: Algorithms and Applications*, Ph.D. thesis, Brown University.Wheeler, M. F. (1978). An elliptic collocation-finite element method with interior penalties.

*SIAM J*.*Numer*.*Anal*.**15**, 152–161.Wierse, M. (1997). A new theoretically motivated higher order upwind scheme on unstructured grids of simplices.

*Adv*.*Comput*.*Math*.**7**, 303–335.Woodward, P., and Colella, P. (1984). The numerical simulation of two-dimensional fluid flow with strong shocks.

*J*.*Comput*.*Phys*.**54**, 115–173.

## Author information

### Authors and Affiliations

## Rights and permissions

## About this article

### Cite this article

Cockburn, B., Shu, CW. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems.
*Journal of Scientific Computing* **16**, 173–261 (2001). https://doi.org/10.1023/A:1012873910884

Issue Date:

DOI: https://doi.org/10.1023/A:1012873910884