Skip to main content
Log in

The influence of polymeric membrane surface free energy on cell metabolic functions

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In membrane bioartificial organs using isolated cells, polymeric semipermeable membranes are used as immunoselective barriers, means for cell oxygenation and also as substrata for adhesion of anchorage-dependent cells. The selection of cytocompatible membranes that promote in vitro cell adhesion and function could be dependent on its membrane properties. In this study we investigated the physicochemical aspects of the interaction between the membrane and mammalian cells in order to provide guidelines to the selection of cytocompatible membranes. We evaluated the metabolic behavior of isolated liver cells cultured on various polymeric membranes such as the ones modified by protein adsorption. The physico-chemical properties of the membranes were characterized by contact angle measurements. The surface free energy of membranes and their different parameters acid (γ+), base (γ-) and Lifshitz-van der Waals (γLW) were calculated according to Good-van Oss's model. The adsorption of protein modified markedly both contact angle and membrane surface tension. In particular, membrane surface free energy decreased drastically with increased water contact angle. For each investigated membrane we observed that liver specific functions of cells improve on hydrophilic membrane surfaces. For all investigated membranes the rate of ammonia elimination increased with increasing of membrane surface free energy.

© 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. De Bartolo and E. Drioli, in “New Biomedical Materials — Basic and Applied Studies” edited by P. I. Haris and D. Chapman (IOS Press, Amsterdam, 1998) p. 167.

    Google Scholar 

  2. A. Bader, N. Fruhauf, M. Tiedge, M. Drinkgen, L. De Bartolo, J. T. Borlak, G. Steinhoff and A. Haverich, Exp. Cell Res. 246(1) (1999) 221.

    Google Scholar 

  3. L. De Bartolo, G. Jarosch-Von Schweder, A. Haverich and A. Bader, Biotech. Progress 16 (2000) 102.

    Google Scholar 

  4. R. Singhvi, G. Stephanopoulos and D. I. C. Wang, Biotechnol. Bioeng. 43 (1994) 764.

    Google Scholar 

  5. M. J. Lydon, T. W. Minett and B. J. Tighe, Biomaterials 6 (1985) 396.

    Google Scholar 

  6. L. De Bartolo, G. Catapano, C. Della Volpe and E. Drioli, J. Biomat. Sci. — Polymer Edn. 10(7) (1999) 641.

    Google Scholar 

  7. G. Catapano, M. C. Di Lorenzo, C. Della Volpe, L. De Bartolo and C. Miglaresi, J. Biomater. Sci. — Polymer Edn. 7 (1996) 1017.

    Google Scholar 

  8. A. Bader, L. De Bartolo and A. Haverich, J. Biotechnology 81(2–3) (2000) 95.

    Google Scholar 

  9. R. J. Good, J. Adhesion Sci. Technol. 12 (1992) 1269.

    Google Scholar 

  10. G. Catapano, L. De Bartolo, C. P. Lombardi and E. Drioli, Int. J. Artif. Organs 19(1) (1996) 61.

    Google Scholar 

  11. M. N. Berry, A. M. Edwards and G. J. Barritt, in “Laboratory Techniques in Biochemistry and Molecular Biology” edited by R. H. Burdon and P. H. van Knippenberg (Elsevier, Amsterdam, 1991).

    Google Scholar 

  12. A. Bismarck, M. E. Kumru and J. Springer, J. Colloid Interf. Sci. 217 (1999) 377.

    Google Scholar 

  13. D. R. Absolom, W. Zingg and A. Neumann, J. Biomed. Mater. Res. 21 (1987) 161.

    Google Scholar 

  14. J. H. Lee, G. Khang, J. W. Lee and H. B. Lee, J. Colloid Interf. Sci. 205 (1998) 323.

    Google Scholar 

  15. G. Altankov, F. Grinnell and T. Groth, J. Biomed. Mater. Res. 30 (1996) 385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. De Bartolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bartolo, L., Morelli, S., Bader, A. et al. The influence of polymeric membrane surface free energy on cell metabolic functions. Journal of Materials Science: Materials in Medicine 12, 959–963 (2001). https://doi.org/10.1023/A:1012857031409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012857031409

Keywords

Navigation