Skip to main content
Log in

BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a Hopf algebra \({\mathcal{A}}\), we define the structures of differential complexes on two dual exterior Hopf algebras: (1) an exterior extension of \({\mathcal{A}}\) and (2) an exterior extension of the dual algebra \({\mathcal{A}}\) *. The Heisenberg double of these two exterior Hopf algebras defines the differential algebra for the Cartan differential calculus on \({\mathcal{A}}\). The first differential complex is an analogue of the de Rham complex. When \({\mathcal{A}}\) * is a universal enveloping algebra of a Lie (super)algebra, the second complex coincides with the standard complex. The differential is realized as an (anti)commutator with a BRST operator Q. We give a recursive relation that uniquely defines the operator Q. We construct the BRST and anti-BRST operators explicitly and formulate the Hodge decomposition theorem for the case of the quantum Lie algebra U q(gl(N)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. L. Woronowicz, Commun. Math. Phys., 122, 125 (1989).

    Google Scholar 

  2. P. Aschieri and L. Castellani, Int. J. Mod. Phys. A, 8, 1667 (1993).

    Google Scholar 

  3. A. Klimyk and K. Schmudgen, Quantum Groups and Their Representations, Springer, Berlin (1997).

    Google Scholar 

  4. A. P. Isaev, Fiz. Elem. Chast. At. Yadra, 28, No. 3, 685 (1997).

    Google Scholar 

  5. A. Connes, Noncommutative Geometry, Acad. Press, New York (1994).

    Google Scholar 

  6. Yu. I. Manin, Theor. Math. Phys., 92, 997 (1992); G. Maltsiniotis, Commun. Math. Phys., 151, 275 (1993); C. R. Acad. Sci. Sér. I, 311, 831 (1990); B. Tsygan, Selecta Math., 12, 75 (1993).

    Google Scholar 

  7. B. Jurco, Lett. Math. Phys., 22, 177 (1991).

    Google Scholar 

  8. N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Leningrad Math. J., 1, No. 1, 193 (1990).

    Google Scholar 

  9. A. Sudbery, Phys. Lett. B, 284, 61 (1992); A. P. Isaev and P. N. Pyatov, Phys. Lett. A, 179, 81 (1993); hep-th/9211093 (1992).

    Google Scholar 

  10. P. Schupp, P. Watts, and B. Zumino, Lett. Math. Phys., 25, 139 (1992).

    Google Scholar 

  11. A. P. Isaev and P. N. Pyatov, J. Phys. A, 28, 2227 (1995); hep-th/9311112 (1993).

    Google Scholar 

  12. L. D. Faddeev and P. N. Pyatov, “The differential calculus on quantum linear groups,” in: Contemporary Mathematical Physics (R. L. Dobrushin et al., eds.), Am. Math. Soc., Providence, RI (1996), p. 35; hepth/ 9402070 (1994); “Quantization of differential calculus on linear groups,” in: Problems in Modern Theoretical Physics 96-212 [in Russian] (A. P. Isaev, ed.), Dubna (1996), p. 19.

  13. I. Ya. Aref'eva, G. E. Arutyunov, and P. B. Medvedev, J. Math. Phys., 35, 6658( 1994).

    Google Scholar 

  14. G. E. Arutyunov, A. P. Isaev, and Z. Popowicz, J. Phys. A, 28, 4349 (1995); q-alg/9502002 (1995).

    Google Scholar 

  15. U. Carow-Watamura, M. Schlieker, S. Watamura, and W. W eich, Commun. Math. Phys., 142, 605 (1991).

    Google Scholar 

  16. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton (1992).

    Google Scholar 

  17. J. W. van Holten, Nucl. Phys. B, 339, 158(1990).

    Google Scholar 

  18. C. Chryssomalakos, J. A. de Azcarraga, A. J. Macfarlane, and J. C. Perez Bueno, J. Math. Phys., 40, 6009 (1999).

    Google Scholar 

  19. D. Bernard, Prog. Theor. Phys. Suppl., 102, 49 (1990); Phys. Lett. B, 260, 389 (1991).

    Google Scholar 

  20. S. Watamura, Commun. Math. Phys., 158, 67 (1992).

    Google Scholar 

  21. A. P. Isaev, J. Math. Phys., 35, 6784 (1994); hep-th/9402060 (1994); Lett. Math. Phys., 34, 333 (1995); hep-th/9403154 (1994).

    Google Scholar 

  22. S. L. Woronowicz, Publ. RIMS Kyoto, 23, 117 (1987).

    Google Scholar 

  23. T. Brzezinski, Lett. Math. Phys., 27, 287 (1993).

    Google Scholar 

  24. D. I. Gurevich, Alg. Anal., 2, No. 4, 119 (1990).

    Google Scholar 

  25. O. V. Radko and A. A. Vladimirov, J. Math. Phys., 38, 5434 (1997).

    Google Scholar 

  26. S. Baaj and G. Skandalis, Ann. Sci. Éc. Norm. Sup. 4 série, 26, 425 (1993); R. M. Kashaev, St. Petersbg. Math. J., 8, No. 4, 585 (1997); q-alg/9503005 (1995).

    Google Scholar 

  27. P. Schupp, “Cartan calculus: differential geometry for quantum groups,” hep-th/9408170 (1994).

  28. C. Burdik, A. P. Isaev, and O. V. Ogievetsky, “Standard complex for quantum Lie algebras,” math.QA/0010060 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, A.P., Ogievetsky, O.V. BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups. Theoretical and Mathematical Physics 129, 1558–1572 (2001). https://doi.org/10.1023/A:1012839308392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012839308392

Keywords

Navigation